Conformational behaviour of hydrophobically modified (HM) polymer gels in solutions of nonionic surfactants is studied theoretically. A HM gel contains hydrophobic side chains (stickers) grafted to its subchains. Hydrophobic stickers are capable to aggregate into joint micelles with surfactant molecules. Micelles containing more than one sticker serve as additional physical cross-links of the network, and their formation causes gel shrinking. In the proposed theoretical model, the interior of the gel/surfactant complex is treated as an array of densely packed spherical polymer brushes consisting of gel subchains tethered to the surface of the spherical sticker/surfactant micelles. Effect of stickers length and grafting density, surfactant concentration and hydrophobicity on gel swelling as well as on hydrophobic association inside it is analyzed. It is shown that increasing surfactant concentration can result in a gel collapse, which is caused by surfactant-induced hydrophobic aggregation of stickers, and a successive gel reswelling. The latter should be attributed to a growing fraction of surfactants in joint aggregates and, hence, increasing number of micelles containing only one sticker and not participating in gel physical cross-linking. In polyelectrolyte (PE) gels hydrophobic aggregation is opposed by osmotic pressure of mobile counterions, so that at some critical ionization degree hydrophobic association is completely suppressed. Hydrophobic modification of polymers is shown to open new ways for controlling gel responsiveness. In particular, it is discussed that incorporation of photosensitive groups into gel subchains and/or surfactant tail could give a possibility to vary the gel volume by light. Since hydrophobic aggregation regularities in gels and solutions are common, we hope our findings will be useful for design of polymer based self-healing materials as well.

1.
J. F.
Mano
,
Adv. Eng. Mater.
10
,
515
(
2008
).
2.
J.
Jagur-Grodzinski
,
Polym. Adv. Technol.
21
,
27
(
2010
).
3.
D. C.
Tuncaboylu
,
M.
Sari
,
W.
Oppermann
, and
O.
Okay
,
Macromolecules
44
,
4997
(
2011
).
4.
D. C.
Tuncaboylu
,
M.
Sahin
,
A.
Argun
,
W.
Oppermann
, and
O.
Okay
,
Macromolecules
45
,
1991
(
2012
).
5.
U.
Gulyuz
and
O.
Okay
,
Macromolecules
47
,
6889
(
2014
).
6.
E. B.
Stukalin
,
L. H.
Cai
,
N. A.
Kumar
,
L.
Leibler
, and
M.
Rubinstein
,
Macromolecules
46
,
7525
(
2013
).
7.
A.
Sarrazin-Cartalas
,
I.
Iliopoulos
,
R.
Audebert
, and
U.
Olsson
,
Langmuir
10
,
1421
(
1994
).
8.
B.
Magny
,
I.
Iliopoulos
,
R.
Zana
, and
R.
Audebert
,
Langmuir
10
,
3180
(
1994
).
9.
H.
Zhang
,
K.
Xu
,
H.
Ai
,
D.
Chen
,
L.
Xv
, and
M.
Chen
,
J. Solution Chem.
37
,
1137
(
2008
).
10.
L.
Bromberg
,
J. Phys. Chem. B
102
,
10736
(
1998
).
11.
A. K.
Ho
,
L. E.
Bromberg
,
P. D. T.
Huibers
,
A. J.
O’Connor
,
J. M.
Perera
,
G. W.
Stevens
, and
T. A.
Hatton
,
Langmuir
18
,
3005
(
2002
).
12.
O. E.
Philippova
,
D.
Hourdet
,
R.
Audebert
, and
A. R.
Khokhlov
,
Macromolecules
29
,
2822
(
1996
).
13.
O. E.
Philippova
,
D.
Hourdet
,
R.
Audebert
, and
A. R.
Khokhlov
,
Macromolecules
30
,
8278
(
1997
).
14.
O.
Rosén
,
J.
Sjöström
, and
L.
Piculell
,
Langmuir
14
,
5795
(
1998
).
15.
J.
Sjöström
and
L.
Piculell
,
Langmuir
16
,
4770
(
2000
).
16.
J.
Sjöström
and
L.
Piculell
,
Colloids Surf., A
183-185
,
429
(
2001
).
17.
L. E.
Bromberg
and
D. P.
Barr
,
Macromoleules
32
,
3649
(
1999
).
18.
R. H.
Colby
,
N.
Plucktaveesak
, and
L.
Bromberg
,
Langmuir
17
,
2937
(
2001
).
19.
O. E.
Philippova
,
A. S.
Andreeva
,
A. R.
Khokhlov
,
A. K.
Islamov
,
A. I.
Kuklin
, and
V. I.
Gordeliy
,
Langmuir
19
,
7240
(
2003
).
20.
A. S.
Andreeva
,
O. E.
Philippova
,
A. R.
Khokhlov
,
A. K.
Islamov
, and
A. I.
Kuklin
,
Langmuir
21
,
1216
(
2005
).
21.
O. V.
Borisov
and
A.
Halperin
,
Macromolecules
32
,
5097
(
1999
).
22.
A.
Kudlay
and
I.
Erukhimovich
,
Macromol. Theory Simul.
10
,
542
(
2001
).
23.
I. I.
Potemkin
,
V. V.
Vasilevskaya
, and
A. R.
Khokhlov
,
J. Chem. Phys.
111
,
2809
(
1999
).
24.
V. V.
Vasilevskaya
,
I. I.
Potemkin
, and
A. R.
Khokhlov
,
Langmuir
15
,
7918
(
1999
).
25.
A. N.
Semenov
and
M.
Rubinstein
,
Macromolecules
31
,
1373
(
1998
).
26.
O. V.
Borisov
and
A.
Halperin
,
Langmuir
11
,
2911
(
1995
).
27.
O. V.
Borisov
and
A.
Halperin
,
Europhys. Lett.
34
,
657
(
1996
).
28.
O. V.
Borisov
and
A.
Halperin
,
Macromolecules
30
,
4432
(
1997
).
29.
A. V.
Dobrynin
and
M.
Rubinstein
,
Macromolecules
33
,
8097
(
2000
).
30.
J. N.
Israelachvili
,
Intermolecular and Surface Forces
, 2nd ed. (
Academic Press
,
London
,
1991
).
31.
A. R.
Khokhlov
and
E. Yu.
Kramarenko
,
Macromol. Theory Simul.
3
,
45
(
1994
).
32.
O. E.
Philippova
,
A. M.
Rumyantsev
,
E. Yu.
Kramarenko
, and
A. R.
Khokhlov
,
Macromolecules
46
,
9359
(
2013
).
33.
O. V.
Borisov
and
A.
Halperin
,
Macromolecules
29
,
2612
(
1996
).
34.
T. M.
Birshtein
and
E. B.
Zhulina
,
Polymer
30
,
170
(
1989
).
35.
A. M.
Rumyantsev
,
S.
Santer
, and
E. Yu.
Kramarenko
,
Macromolecules
47
,
5388
(
2014
).
36.
A. R.
Khokhlov
,
E. Yu.
Kramarenko
,
E. E.
Makhaeva
, and
S. G.
Starodubtsev
,
Macromol. Theory Simul.
1
,
105
(
1992
).
37.
C. T.
Lee
, Jr.
,
K. A.
Smith
, and
T. A.
Hatton
,
Macromolecules
37
,
5397
(
2004
).
38.
P.
Pincus
,
Macromolecules
24
,
2912
(
1991
).
39.
O. V.
Borisov
,
J. Phys. II France
6
,
1
(
1996
).
40.
M.
Daoud
and
J. P.
Cotton
,
J. Phys.
43
(
3
),
531
(
1982
).
41.
O. V.
Borisov
,
E. B.
Zhulina
,
F. A. M.
Leermakers
, and
A. H. E.
Müller
,
Adv Polym Sci
241
,
57
(
2011
).
42.
A. R.
Khokhlov
,
S. G.
Starodubtzev
, and
V. V.
Vasilevskaya
,
Adv. Polym. Sci.
109
,
123
(
1993
).
43.
L.
Piculell
,
D.
Hourdet
, and
I.
Iliopoulos
,
Langmuir
9
,
3324
(
1993
).
44.
O.
Rosén
and
L.
Piculell
,
Polym. Gels Networks
5
,
185
(
1996
).
45.
A. R.
Khokhlov
,
E. Yu.
Kramarenko
,
E. E.
Makhaeva
, and
S. G.
Starodubtsev
,
Macromolecules
25
,
4779
(
1992
).
You do not currently have access to this content.