The protein transport inside a cell is a complex phenomenon that goes through several difficult steps. The facilitated transport requires sophisticated machineries involving protein assemblies. In this work, we developed a diffusion-reaction model to simulate co-transport kinetics of proteins and lipids. We assume the following: (a) there is always a small lipid concentration of order of the Critical Micellar Concentration (CMC) in equilibrium with the membrane; (b) the binding of lipids to proteins modulates the hydrophobicity of the complexes and, therefore, their ability to interact and merge with the bilayer; and (c) some lipids leave the bilayer to replenish those bound to proteins. The model leads to a pair of integral equations for the time-evolution of the adsorbed proteins in the lipid bilayer. Relationships between transport kinetics, CMC, and lipid-protein binding constants were found. Under particular conditions, a perturbation analysis suggests the onset of kinks in the protein adsorption kinetics. To validate our model, we performed leakage measurements of vesicles composed by either high or low CMC lipids interacting with Islet Amyloid PolyPeptide (IAPP) and Aβ (1-40) used as sample proteins. Since the lipid-protein complex stoichiometry is not easily accessible, molecular dynamics simulations were performed using monomeric IAPP interacting with an increasing number of phospholipids. Main results are the following: (a) 1:1 lipid-protein complexes generally show a faster insertion rate proportional to the complex hydrophobicity and inversely related to lipid CMC; (b) on increasing the number of bound lipids, the protein insertion rate decreases; and (c) at slow lipids desorption rate, the lipid-assisted proteins transport might exhibit a discontinuous behavior and does non-linearly depend on protein concentration.

1.
R. E.
Gimeno
,
Curr. Opin. Lipidol.
18
,
271
(
2007
).
2.
J. F. C.
Glatz
,
J. J. F. P.
Luiken
, and
A.
Bonen
,
Physiol. Rev.
90
,
367
(
2010
).
3.
S.-i.
Fujiwara
and
T.
Amisaki
,
Biochim. Biophys. Acta, Gen. Subj.
1830
,
5427
(
2013
).
4.
K.
Pagano
,
S.
Tomaselli
,
S.
Zanzoni
,
M.
Assfalg
,
H.
Molinari
, and
L.
Ragona
,
Comput. Struct. Biotechnol. J.
6
,
1
(
2013
).
5.
S.
Lev
,
Nat. Rev. Mol. Cell Biol.
11
,
739
(
2010
).
6.
G.
Ponsin
,
S. J.
Qu
,
H. Z.
Fan
, and
H. J.
Pownall
,
Biochemistry
42
,
4444
(
2003
).
7.
K.
Kanno
,
M. K.
Wu
,
E. F.
Scapa
,
S. L.
Roderick
, and
D. E.
Cohen
,
Biochim. Biophys. Acta, Mol. Cell Biol. Lipids
1771
,
654
(
2007
).
8.
J.
Tuuf
and
P.
Mattjus
,
Chem. Phys. Lipids
178
,
27
(
2014
).
9.
H.
Vorum
,
R.
Brodersen
,
U.
Kraghhansen
, and
A. O.
Pedersen
,
Biochim. Biophys. Acta
1126
,
135
(
1992
).
10.
G. V.
Richieri
and
A. M.
Kleinfeld
,
J. Lipid Res.
36
,
229
(
1995
).
11.
R. P.
Bazinet
and
S.
Laye
,
Nat. Rev. Neurosci.
15
,
771
(
2014
).
12.
D.
Milardi
,
M. F. M.
Sciacca
,
L.
Randazzo
,
A.
Raudino
, and
C.
La Rosa
,
Front. Endocrinol.
5
,
216
(
2014
).
13.
M.
Derek
,
Handbook of Lipid Bilayer
(
CRC Press, Taylor & Francis Group
,
Boca Raton, FL
,
2013
).
14.
H.
Sprong
,
P.
van der Sluijs
, and
G.
van Meer
,
Nat. Rev. Mol. Cell Biol.
2
,
504
(
2001
).
15.
K.
Kogure
,
C.
Nakamura
,
O.
Okuda
,
K.
Hayashi
, and
M.
Ueno
,
Biochim. Biophys. Acta, Biomembr.
1329
,
174
(
1997
).
16.
X. X.
Li
and
C.
Colombini
,
Biophys. J.
83
,
2550
(
2002
).
17.
V. A. M.
Gold
,
F.
Duong
, and
I.
Collinson
,
Mol. Membr. Biol.
24
,
387
(
2007
).
18.
W. N.
Charman
,
C. J. H.
Porter
,
S.
Mithani
, and
J. B.
Dressman
,
J. Pharm. Sci.
86
,
269
(
1997
).
19.
N.
Kanikkannan
,
J. B.
Ramapuram
, and
M.
Singh
,
Percutaneous Penetration Enanhcers
(
CRC Press
,
2005
).
20.
M.
Pannuzzo
,
A.
Raudino
,
D.
Milardi
,
C.
La Rosa
, and
M.
Karttunen
,
Sci. Rep.
3
,
2781
(
2013
).
21.
M. F. M.
Engel
,
H.
Yigittop
,
R. C.
Elgersma
,
D. T. S.
Rijkers
,
R. M. J.
Liskamp
,
B.
de Kruijff
,
J. W. M.
Hoppener
, and
J. A.
Killian
,
J. Mol. Biol.
356
,
783
(
2006
).
22.
S.
Scalisi
,
M. F. M.
Sciacca
,
G.
Zhavnerko
,
D. M.
Grasso
,
G.
Marletta
, and
C.
La Rosa
,
ChemBioChem
11
,
1856
(
2010
).
23.
F.
Lolicato
,
A.
Raudino
,
D.
Milardi
, and
C.
La Rosa
,
Eur. J. Med. Chem.
92
,
876
(
2015
).
24.
S. D.
Zucker
,
Biochemistry
40
,
977
(
2001
).
25.
M. S. C.
Abreu
,
L.
Estronca
,
M. J.
Moreno
, and
W. L. C.
Vaz
,
Biophys. J.
84
,
386
(
2003
).
26.
L.
Estronca
,
M. J.
Moreno
,
J. A. N.
Laranjinha
,
L. M.
Almeida
, and
W. L. C.
Vaz
,
Biophys. J.
88
,
557
(
2005
).
27.
C. E.
Brenner
,
Fundamentals of Multiphase Flow
(
Cambridge University Press
,
2005
).
28.
P.-G.
de Gennes
,
Scaling Concepts in Polymer Physics
(
Cornell University Press
,
Ithaca, NY
,
1996
).
29.
J. C.
Jaeger
and
H. S.
Carslaw
,
Conduction of Heat in Solid
(
Oxford University Press
,
Oxford
,
1986
).
30.
L.
Tordai
and
A. F. H.
Ward
,
J. Chem. Phys.
14
,
453
(
1946
).
31.
C. H.
Chang
and
E. I.
Franses
,
Colloids Surf., A
100
,
1
(
1995
).
32.
H.
Diamant
and
D.
Andelman
,
J. Phys. Chem.
100
,
13732
(
1996
).
33.
G.
Ariel
,
H.
Diamant
, and
D.
Andelman
,
Langmuir
15
,
3574
(
1999
).
34.
L.
Liggieri
,
F.
Ravera
, and
A.
Passerone
,
Colloids Surf., A
114
,
351
(
1996
).
35.
See supplementary material at http://dx.doi.org/10.1063/1.4948323 for theory and experimental details.
36.
C.
Tanford
,
The Hydrophobic Effect: Formation of Micelles & Biological Membranes
(
Wiley
,
New York
,
1980
).
37.
M. E.
Hodsdon
,
J. W.
Ponder
, and
D. P.
Cistola
,
J. Mol. Biol.
264
,
585
(
1996
).
38.
G. W.
Han
 et al.,
J. Mol. Biol.
308
,
263
(
2001
).
39.
Y.
Tsfadia
,
R.
Friedman
,
J.
Kadmon
,
A.
Selzer
,
E.
Nachliel
, and
M.
Gutman
,
FEBS Lett.
581
,
1243
(
2007
).
40.
D.
Sengupta
and
A.
Chattopadhyay
,
J. Phys. Chem. B
116
,
12991
(
2012
).
41.
L. J.
Smith
,
W. F.
Van Gunsteren
, and
J. R.
Allison
,
Protein Sci.
22
,
56
(
2013
).
42.
J.
Biazar
and
H.
Ghazvini
,
Chaos, Solitons Fractals
39
,
770
(
2009
).
43.
J. P.
Douliez
,
S.
Jegou
,
C.
Pato
,
D.
Molle
,
V.
Tran
, and
D.
Marion
,
Eur. J. Biochem.
268
,
384
(
2001
).
44.
R.
Friedman
,
E.
Nachliel
, and
M.
Gutman
,
Biophys. J.
90
,
1535
(
2006
).
45.
A. Y.
Shih
,
A.
Arkhipov
,
P. L.
Freddolino
, and
K.
Schulten
,
J. Phys. Chem. B
110
,
3674
(
2006
).
46.
J. R.
Simard
,
P. A.
Zunszain
,
C. E.
Ha
,
J. S.
Yang
,
N. V.
Bhagavan
,
I.
Petitpas
,
S.
Curry
, and
J. A.
Hamilton
,
Proc. Natl. Acad. Sci. U. S. A.
102
,
17958
(
2005
).
47.
T.
Herrmann
 et al.,
J. Cell Biol.
161
,
1105
(
2003
).
48.
B.
Jönsson
,
K.
Holmberg
,
A.
Kronberg
, and
B.
Lidman
,
Surfactant and Polymer in Aqueous Solutions
(
Wiley
,
2002
).
49.
L. R.
McLean
and
M. C.
Phillips
,
Biochemistry
23
,
4624
(
1984
).
50.
D.
Marsh
and
L. I.
Horvath
,
Biochim. Biophys. Acta, Rev. Biomembr.
1376
,
267
(
1998
).
51.
H.
Heerklotz
and
J.
Seelig
,
Biophys. J.
78
,
2435
(
2000
).
52.
J. V.
Vermaas
and
E.
Tajkhorshid
,
J. Phys. Chem. B
118
,
1754
(
2014
).
53.
M.
Corti
,
M.
Pannuzzo
, and
A.
Raudino
,
Langmuir
31
,
6277
(
2015
).
54.
N.
Sapay
,
W. F. D.
Bennett
, and
D. P.
Tieleman
,
Soft Matter
5
,
3295
(
2009
).
55.
A.
Grafmueller
,
R.
Lipowsky
, and
V.
Knecht
,
Phys. Chem. Chem. Phys.
15
,
876
(
2013
).
56.
A. G.
Karabadzhak
,
D.
Weerakkody
,
D.
Wijesinghe
,
M. S.
Thakur
,
D. M.
Engelman
,
O. A.
Andreev
,
V. S.
Markin
, and
Y. K.
Reshetnyak
,
Biophys. J.
102
,
1846
(
2012
).
57.
S. H.
White
,
J. Gen. Physiol.
129
,
363
(
2007
).
58.
J. C.
Gumbart
,
I.
Teo
,
B.
Roux
, and
K.
Schulten
,
J. Am. Chem. Soc.
135
,
2291
(
2013
).
59.
J. P.
Ulmschneider
,
M.
Andersson
, and
M. B.
Ulmschneider
,
J. Membr. Biol.
239
,
15
(
2011
).
60.
J. P.
Ulmschneider
,
J. C.
Smith
,
S. H.
White
, and
M. B.
Ulmschneider
,
J. Am. Chem. Soc.
133
,
15487
(
2011
).
61.
F.
Cymer
,
G.
von Heijne
, and
S. H.
White
,
J. Mol. Biol.
427
,
999
(
2015
).
62.
F.
Capuano
,
A.
Vergara
,
L.
Paduano
,
O.
Annunziata
, and
R.
Sartorio
,
J. Phys. Chem. B
107
,
12363
(
2003
).
63.
J.
Seelig
,
Biochim. Biophys. Acta, Biomembr.
1666
,
40
(
2004
).
64.
K. R.
Miller
and
D. P.
Cistola
,
Mol. Cell. Biochem.
123
,
29
(
1993
).
65.
M. J.
McArthur
,
B. P.
Atshaves
,
A.
Frolov
,
W. D.
Foxworth
,
A. B.
Kier
, and
F.
Schroeder
,
J. Lipid Res.
40
,
1371
(
1999
).
66.
A. P. M.
de Brouwer
,
C.
Versluis
,
J.
Westerman
,
B.
Roelofsen
,
A. J. R.
Heck
, and
K. W. A.
Wirtz
,
Biochemistry
41
,
8013
(
2002
).
67.
A. M.
Turing
,
Philos. Trans. R. Soc., B
237
,
37
(
1952
).
68.
T.
Teorell
,
J. Gen. Physiol.
42
,
831
(
1959
).
69.
E.
Del Favero
,
A.
Raudino
,
M.
Pannuzzo
,
P.
Brocca
,
S.
Motta
, and
L.
Cantu
,
J. Phys. Chem. B
116
,
9570
(
2012
).
70.
P.
Westermark
,
A.
Andersson
, and
G. T.
Westermark
,
Physiol. Rev.
91
,
795
(
2011
).
71.
A.
Quist
,
L.
Doudevski
,
H.
Lin
,
R.
Azimova
,
D.
Ng
,
B.
Frangione
,
B.
Kagan
,
J.
Ghiso
, and
R.
Lal
,
Proc. Natl. Acad. Sci. U. S. A.
102
,
10427
(
2005
).
72.
J. D.
Knight
and
A. D.
Miranker
,
J. Mol. Biol.
341
,
1175
(
2004
).
73.
D.
Marsh
,
Biophys. J.
102
,
1079
(
2012
).
74.
S. M.
Patil
,
S.
Xu
,
S. R.
Sheftic
, and
A. T.
Alexandrescu
,
J. Biol. Chem.
284
,
11982
(
2009
).

Supplementary Material

You do not currently have access to this content.