We investigate how systematically increasing the accuracy of various molecular dynamics modeling techniques influences the structure and capacitance of ionic liquid electric double layers (EDLs). The techniques probed concern long-range electrostatic interactions, electrode charging (constant charge versus constant potential conditions), and electrolyte polarizability. Our simulations are performed on a quasi-two-dimensional, or slab-like, model capacitor, which is composed of a polarizable ionic liquid electrolyte, [EMIM][BF4], interfaced between two graphite electrodes. To ensure an accurate representation of EDL differential capacitance, we derive new fluctuation formulas that resolve the differential capacitance as a function of electrode charge or electrode potential. The magnitude of differential capacitance shows sensitivity to different long-range electrostatic summation techniques, while the shape of differential capacitance is affected by charging technique and the polarizability of the electrolyte. For long-range summation techniques, errors in magnitude can be mitigated by employing two-dimensional or corrected three dimensional electrostatic summations, which led to electric fields that conform to those of a classical electrostatic parallel plate capacitor. With respect to charging, the changes in shape are a result of ions in the Stern layer (i.e., ions at the electrode surface) having a higher electrostatic affinity to constant potential electrodes than to constant charge electrodes. For electrolyte polarizability, shape changes originate from induced dipoles that soften the interaction of Stern layer ions with the electrode. The softening is traced to ion correlations vertical to the electrode surface that induce dipoles that oppose double layer formation. In general, our analysis indicates an accuracy dependent differential capacitance profile that transitions from the characteristic camel shape with coarser representations to a more diffuse profile with finer representations.

1.
V.
Lockett
,
R.
Sedev
,
J.
Ralston
,
M.
Horne
, and
T.
Rodopoulos
,
J. Phys. Chem. C
112
,
7486
(
2008
).
2.
M. M.
Islam
,
M. T.
Alam
, and
T.
Ohsaka
,
J. Phys. Chem. C
112
,
16568
(
2008
).
3.
V.
Lockett
,
M.
Horne
,
R.
Sedev
,
T.
Rodopoulos
, and
J.
Ralston
,
Phys. Chem. Chem. Phys.
12
,
12499
(
2010
).
4.
T.
Pajkossy
and
D. M.
Kolb
,
Electrochim. Commun.
13
,
284
(
2011
).
5.
M.
Gnahm
,
T.
Pajkossy
, and
D. M.
Kolb
,
Electrochim. Acta
55
,
6212
(
2010
).
6.
J. P.
Zheng
,
P. C.
Goonetilleke
,
C. M.
Pettit
, and
D.
Roy
,
Talanta
81
,
1045
(
2010
).
7.
J.
Zheng
,
S. S.
Moganty
,
P. C.
Goonetilleke
,
R. E.
Baltus
, and
D.
Roy
,
J. Phys. Chem. C
115
,
7527
(
2011
).
8.
R. M.
Lynden-Bell
,
M. G.
Del Pópolo
,
T. G. A.
Youngs
,
J.
Kohanoff
,
C. G.
Hanke
,
J. B.
Harper
, and
C. C.
Pinilla
,
Acc. Chem. Res.
40
,
1138
(
2007
).
9.
S.
Tazi
,
M.
Salanne
,
C.
Simon
,
P.
Turq
,
M.
Pounds
, and
P. A.
Madden
,
J. Phys. Chem. B
114
,
8453
(
2010
).
10.
N. N.
Rajput
,
J.
Monk
,
R.
Singh
, and
F. R.
Hung
,
J. Phys. Chem. C
116
,
14504
(
2012
).
11.
C.
Pinialla
,
M. G.
Del Pópolo
,
J.
Kohanoff
, and
R. M.
Lynden-Bell
,
J. Phys. Chem. B
111
,
4877
(
2007
).
12.
P.
Wu
,
J.
Huang
,
V.
Meunier
,
B. G.
Sumpter
, and
R.
Qiao
,
ACS Nano
5
,
9044
(
2011
).
13.
G.
Feng
and
P. T.
Cummings
,
J. Phys. Chem. Lett.
2
,
2859
(
2011
).
14.
Y.
Shim
and
H. J.
Kim
,
ACS Nano
4
,
2345
(
2010
).
15.
C.
Merlet
,
B.
Rotenberg
,
P. A.
Madden
,
P.-L.
Taberna
,
P.
Simon
,
Y.
Gogotsi
, and
M.
Salanne
,
Nat. Mater.
11
,
306
(
2012
).
16.
D.
Jiang
,
Z.
Jin
, and
J.
Wu
,
Nano Lett.
11
,
5373
(
2011
).
17.
G.
Feng
,
R.
Qiao
,
J.
Huang
,
B. G.
Sumpter
, and
V.
Meunier
,
J. Phys. Chem. C
114
,
18012
(
2010
).
18.
S.
Li
,
K. L.
Van Aken
,
J. K.
McDonough
,
G.
Feng
,
Y.
Gogotsi
, and
P. T.
Cummings
,
J. Phys. Chem. C
118
,
3901
(
2014
).
19.
M. V.
Fedorov
and
A. A.
Kornyshev
,
J. Phys. Chem. B
112
,
11868
(
2008
).
20.
G.
Feng
,
J. S.
Zhang
, and
R.
Qiao
,
J. Phys. Chem. C
113
,
4549
(
2009
).
21.
Y.
Shim
,
Y.
Jung
, and
H. J.
Kim
,
J. Phys. Chem. C
115
,
23574
(
2011
).
22.
Z.
Hu
,
J.
Vatamanu
,
O.
Borodin
, and
D.
Bedrov
,
Electrochim. Acta
145
,
40
(
2014
).
23.
J.
Vatamanu
,
M.
Vatamanu
, and
D.
Bedrov
,
ACS Nano
9
,
5999
(
2015
).
24.
J.
Vatamanu
,
O.
Borodin
, and
G. D.
Smith
,
J. Am. Chem. Soc.
132
,
14825
(
2010
).
25.
J.
Vatamanu
,
O.
Borodin
, and
G. D.
Smith
,
J. Phys. Chem. B
115
,
3073
(
2011
).
26.
D.
Bedrov
,
J.
Vatamanu
, and
Z.
Hu
,
J. Non-Cryst. Solids
407
,
339
(
2015
).
27.
J.
Vatamanu
,
O.
Borodin
, and
G. D.
Smith
,
Phys. Chem. Chem. Phys.
12
,
170
(
2010
).
28.
J.
Vatamanu
,
O.
Borodin
, and
G. D.
Smith
,
J. Phys. Chem. C
116
,
1114
(
2011
).
29.
K.
Breitsprecher
,
K.
Szuttor
, and
C.
Holm
,
J. Phys. Chem. C
119
,
22445
(
2015
).
30.
C.
Merlet
,
M.
Salanne
,
B.
Rotenberg
, and
P. A.
Madden
,
J. Phys. Chem. C
115
,
16613
(
2011
).
31.
C.
Merlet
,
D.
Limmer
,
M.
Salanne
,
R.
van Roij
,
P. A.
Madden
,
D.
Chandler
, and
B.
Rotenberg
,
J. Phys. Chem. C
118
,
18291
(
2014
).
32.
N. N.
Rajput
,
J.
Monk
,
R.
Singh
, and
F. R.
Hung
,
J. Phys. Chem. C
116
,
5169
(
2012
).
33.
K. L.
Van Aken
,
J. K.
McDonough
,
S.
Li
,
G.
Feng
,
S. M.
Chathoth
,
E.
Mamontov
,
P. F.
Fulvio
,
P. T.
Cummings
,
S.
Dai
, and
Y.
Gogotsi
,
J. Phys.: Condens. Matter
26
,
284104
(
2014
).
34.
J. B.
Haskins
,
W. R.
Bennett
,
J. J.
Wu
,
D. M.
Hernández
,
O.
Borodin
,
J. D.
Monk
,
C. W.
Bauschlicher
, Jr.
, and
J. W.
Lawson
,
J. Phys. Chem. B
118
,
11295
(
2014
).
35.
O.
Borodin
,
G. D.
Smith
, and
W.
Henderson
,
J. Phys. Chem. B
110
,
16879
(
2006
).
36.
Z.
Li
,
G. D.
Smith
, and
D.
Bedrov
,
J. Phys. Chem. B
116
,
12801
(
2012
).
37.
C. J. F.
Solano
,
S.
Jeremias
,
E.
Paillard
,
D.
Beljonne
, and
R.
Lazzaroni
,
J. Chem. Phys.
139
,
034502
(
2013
).
38.
J. B.
Haskins
,
C. W.
Bauschlicher
, Jr.
, and
J. W.
Lawson
,
J. Phys. Chem. B
119
,
14705
(
2015
).
39.
C. W.
Bauschlicher
, Jr.
,
J. B.
Haskins
,
E. W.
Bucholz
,
J. W.
Lawson
, and
O.
Borodin
,
J. Phys. Chem. B
118
,
10785
(
2014
).
40.
M. V.
Fedorov
and
A. A.
Kornyshev
,
Chem. Rev.
114
,
2978
(
2014
).
41.
J. M.
Black
,
D.
Walters
,
A.
Labuda
,
G.
Feng
,
P. C.
Hillesheim
,
S.
Dai
,
P. T.
Cummings
,
S. V.
Kalinin
,
R.
Proksch
, and
N.
Balke
,
Nano Lett.
13
,
5954
(
2013
).
42.
J. I.
Siepmann
and
M.
Sprik
,
J. Chem. Phys.
102
,
511
(
1995
).
43.
M.
Sprik
and
M. L.
Klein
,
J. Chem. Phys.
89
,
7556
(
1988
).
44.
M.
Kawata
and
M.
Mikami
,
Chem. Phys. Lett.
340
,
157
(
2001
).
45.
I.-C.
Yeh
and
M. L.
Berkowitz
,
J. Chem. Phys.
111
,
3155
(
1999
).
46.
D. T.
Limmer
,
C.
Merlet
,
M.
Salanne
,
D.
Chandler
,
P. A.
Madden
,
R.
van Roij
, and
B.
Rotenberg
,
Phys. Rev. Lett.
111
,
106102
(
2013
).
47.
Z.
Wang
,
Y.
Yang
,
D. L.
Olmsted
,
M.
Asta
, and
B. B.
Laird
,
J. Chem. Phys.
141
,
184102
(
2014
).
48.
S. K.
Reed
,
O. J.
Lanning
, and
P. A.
Madden
,
J. Chem. Phys.
126
,
084704
(
2007
).
49.
C.
Merlet
,
C.
Péan
,
B.
Rotenberg
,
P. A.
Madden
,
P.
Simon
, and
M.
Salanne
,
J. Phys. Chem. Lett.
4
,
264
(
2013
).
50.
O.
Borodin
and
G. D.
Smith
,
J. Phys. Chem. B
110
,
6279
(
2006
).
51.
O.
Borodin
and
G. D.
Smith
,
J. Phys. Chem. B
110
,
6293
(
2006
).
52.
O.
Borodin
,
J. Phys. Chem. B
113
,
11463
(
2009
).
54.
D. M.
Heyes
,
M.
Barber
, and
J. H. R.
Clarke
,
J. Chem. Soc., Faraday Trans. 2
73
,
1485
(
1977
).
55.
S. W.
de Leeuw
and
J. W.
Perram
,
Mol. Phys.
37
,
1313
(
1979
).
56.
J. B.
Haskins
and
J. W.
Lawson
, “
Computational and Experimental Study of Li-Doped Ionic Liquids at Electrified Interfaces
,” J. Phys. Chem. C (submitted).
57.
58.
J. B.
Johnson
,
Phys. Rev.
32
,
97
(
1928
).
59.
See supplementary material at http://dx.doi.org/10.1063/1.4948938 for additional details of the ion density profiles and structure at the surface.

Supplementary Material

You do not currently have access to this content.