We present a continuation of our theoretical research into the influence of co-solvent polarizability on a differential capacitance of the electric double layer. We formulate a modified Poisson-Boltzmann theory, using the formalism of density functional approach on the level of local density approximation taking into account the electrostatic interactions of ions and co-solvent molecules as well as their excluded volume. We derive the modified Poisson-Boltzmann equation, considering the three-component symmetric lattice gas model as a reference system and minimizing the grand thermodynamic potential with respect to the electrostatic potential. We apply present modified Poisson-Boltzmann equation to the electric double layer theory, showing that accounting for the excluded volume of co-solvent molecules and ions slightly changes the main result of our previous simplified theory. Namely, in the case of small co-solvent polarizability with its increase under the enough small surface potentials of electrode, the differential capacitance undergoes the significant growth. Oppositely, when the surface potential exceeds some threshold value (which is slightly smaller than the saturation potential), the increase in the co-solvent polarizability results in a differential capacitance decrease. However, when the co-solvent polarizability exceeds some threshold value, its increase generates a considerable enhancement of the differential capacitance in a wide range of surface potentials. We demonstrate that two qualitatively different behaviors of the differential capacitance are related to the depletion and adsorption of co-solvent molecules at the charged electrode. We show that an additive of the strongly polarizable co-solvent to an electrolyte solution can shift significantly the saturation potential in two qualitatively different manners. Namely, a small additive of strongly polarizable co-solvent results in a shift of saturation potential to higher surface potentials. On the contrary, a sufficiently large additive of co-solvent shifts the saturation potential to lower surface potentials. We obtain that an increase in the co-solvent polarizability makes the electrostatic potential profile longer-ranged. However, increase in the co-solvent concentration in the bulk leads to non-monotonic behavior of the electrostatic potential profile. An increase in the co-solvent concentration in the bulk at its sufficiently small values makes the electrostatic potential profile longer-ranged. Oppositely, when the co-solvent concentration in the bulk exceeds some threshold value, its further increase leads to decrease in electrostatic potential at all distances from the electrode.

1.
J. N.
Israelachvili
,
Intermolecular and Surface Forces
(
Academic Press
,
2011
).
2.
A.
Naji
,
M.
Kanduc
,
J.
Forsman
, and
R.
Podgornik
,
J. Chem. Phys.
139
,
150901
(
2013
).
3.
D.
Ben-Yaakov
,
D.
Andelman
,
D.
Harries
, and
R.
Podgornik
,
J. Phys.: Condens. Matter
21
,
424106
(
2009
).
4.
R. R.
Netz
,
Eur. Phys. J. E
5
,
557
(
2001
).
5.
A. G.
Moreira
and
R. R.
Netz
,
EPL
52
,
705
(
2000
).
6.
R.
Podgornik
,
J. Chem. Phys.
91
,
5840
(
1989
).
7.
R. R.
Netz
and
H.
Orland
,
Eur. Phys. J. E
2–3
,
203
(
2000
).
8.
J.
Forsman
,
J. Phys. Chem. B
108
,
9236
(
2004
).
9.
M. Z.
Bazant
,
B. D.
Storey
, and
A. A.
Kornyshev
,
Phys. Rev. Lett.
106
,
046102
(
2011
).
10.
R. D.
Coalson
,
A.
Duncan
, and
N. B.
Tal
,
J. Phys. Chem. B
100
,
2612
(
1996
).
11.
A.
Abrashkin
,
D.
Andelman
, and
H.
Orland
,
Phys. Rev. Lett.
99
,
077801
(
2007
).
12.
A.
Levy
,
D.
Andelman
, and
H.
Orland
,
Phys. Rev. Lett.
108
,
227801
(
2012
).
13.
S.
Buyukdagli
and
R.
Blossey
,
J. Chem. Phys.
140
,
234903
(
2014
).
14.
D.
Frydel
,
J. Chem. Phys.
134
,
234704
(
2011
).
15.
S.
Buyukdagli
and
T.
Ala-Nissila
,
Phys. Rev. E
87
,
063201
(
2013
).
16.
I.
Borukhov
,
D.
Andelman
, and
H.
Orland
,
Phys. Rev. Lett.
79
,
435
(
1997
).
17.
D.
Antypov
,
M. C.
Barbosa
, and
C.
Holm
,
Phys. Rev. E
71
,
061106
(
2005
).
18.
A.
Kornyshev
,
J. Phys. Chem. B
111
,
5545
(
2007
).
19.
A. C.
Maggs
and
R.
Podgornik
,
Soft Matter
12
,
1219
(
2015
).
20.
S.
Buyukdagli
and
T.
Ala-Nissila
,
EPL
98
,
60003
(
2012
).
21.
S.
Buyukdagli
,
C. V.
Achim
, and
T.
Ala-Nissila
,
J. Stat. Mech.
2011
,
P05033
.
22.
D.
Ben-Yaakov
,
D.
Andelman
, and
R.
Podgornik
,
J. Chem. Phys.
134
,
074705
(
2011
).
23.
Y.
Nakayama
and
D.
Andelman
,
J. Chem. Phys.
142
,
044706
(
2015
).
24.
M. M.
Hatlo
,
R.
van Roij
, and
L.
Lue
,
EPL
97
,
28010
(
2012
).
25.
R. I.
Slavchov
,
J. Chem. Phys.
140
,
164510
(
2014
).
26.
Yu. A.
Budkov
,
A. L.
Kolesnikov
, and
M. G.
Kiselev
,
EPL
111
,
28002
(
2015
).
27.
J.-L.
Barrat
and
J.-P.
Hansen
,
Basic Concepts for Simple and Complex Liquids
(
Cambridge University Press
,
Cambridge
,
2003
).
28.
I. C.
Sanchez
and
R. H.
Lacombe
,
J. Phys. Chem.
80
(
2
),
1
(
1976
).
29.
M. V.
Fedorov
and
A. A.
Kornyshev
,
Electrochim. Acta
53
,
6835
(
2008
).
30.
J. J.
Howard
,
J. S.
Perkyns
, and
B. M.
Pettitt
,
J. Phys. Chem. B
114
,
6074
(
2010
).
31.
C.
Schroder
and
O.
Steinhause
,
J. Chem. Phys.
142
,
064503
(
2015
).
32.
A.
de Oliveira Cavalcant
,
M. C. C.
Ribeir
, and
M. S.
Skaf
,
J. Chem. Phys.
140
,
144108
(
2014
).
33.
F.
Booth
,
J. Chem. Phys.
142
,
391
(
1951
).
34.
G.
Sutmann
,
J. Electroanal. Chem.
450
,
289
(
1998
).
35.
I.-C.
Yeh
and
M. L.
Berkowitz
,
J. Chem. Phys.
110
,
7935
(
1999
).
36.
E.
Gongadze
and
A.
Iglič
,
Electrochimica Acta
178
,
541
(
2015
).
37.
J.
Luczak
,
C.
Jungnickel
,
M.
Markiewicz
, and
J.
Hupka
,
J. Phys. Chem. B
117
,
5653
(
2013
).
You do not currently have access to this content.