Solutions of semiflexible polymers confined by repulsive planar walls are studied by density functional theory and molecular dynamics simulations, to clarify the competition between the chain alignment favored by the wall and the depletion caused by the monomer-wall repulsion. A coarse-grained bead-spring model with a bond bending potential is studied, varying both the contour length and the persistence length of the polymers, as well as the monomer concentration in the solution (good solvent conditions are assumed throughout, and solvent molecules are not included explicitly). The profiles of monomer density and pressure tensor components near the wall are studied, and the surface tension of the solution is obtained. While the surface tension slightly decreases with chain length for flexible polymers, it clearly increases with chain length for stiff polymers. Thus, at fixed density and fixed chain length, the surface tension also increases with increasing persistence length. Chain ends always are enriched near the wall, but this effect is much larger for stiff polymers than for flexible ones. Also the profiles of the mean square gyration radius components near the wall and the nematic order parameter are studied to clarify the conditions where wall-induced nematic order occurs.

1.
P. J.
Flory
,
Statistical Mechanics of Chain Molecules
(
Wiley
,
New York
,
1969
).
2.
P. G.
de Gennes
,
Scaling Concepts in Polymer Physics
(
Cornell University Press
,
Ithaca
,
1979
).
3.
A. Y.
Grosberg
and
A. R.
Khokhlov
,
Statistical Physics of Macromolecules
(
AIP Press
,
Woodbury
,
1994
).
4.
H.-P.
Hsu
,
W.
Paul
, and
K.
Binder
,
Macromolecules
43
,
3094
(
2010
).
5.
C.
Bustamante
,
J. F.
Marko
,
E. D.
Siggia
, and
S.
Smith
,
Science
265
,
1599
(
1994
).
6.
D. A. D.
Parry
and
E. N.
Baker
,
Rep. Prog. Phys.
47
,
1133
(
1984
).
7.
L.
Onsager
,
Ann. N. Y. Acad. Sci.
51
,
627
(
1949
).
8.
P. G.
de Gennes
and
J.
Prost
,
The Physics of Liquid Crystals
, 2nd ed. (
Clarendon
,
Oxford
,
1992
).
9.
A. R.
Khokhlov
and
A. N.
Semenov
,
Physica A
108
,
546
(
1981
).
10.
A. R.
Khokhlov
and
A. N.
Semenov
,
Physica A
112
,
605
(
1982
).
11.
A. N.
Semenov
and
A. R.
Khokhlov
,
Sov. Phys. Usp.
31
,
988
(
1988
).
12.
M. R.
Wilson
and
M. P.
Allen
,
Mol. Phys.
80
,
277
(
1993
).
13.
Liquid Crystallinity in Polymers: Principles and Fundamental Properties
, edited by
A.
Ciferri
(
VCH Publishers
,
New York
,
1983
).
14.
M.
Grell
,
D. D. C.
Bradley
,
M.
Inbosekarian
, and
E. P.
Woo
,
Adv. Mater.
9
,
798
(
1997
).
15.
X.
Wang
,
J.
Engel
, and
C.
Liu
,
J. Micromech. Microeng.
13
,
628
(
2009
).
16.
A. M.
Donald
,
A. H.
Windle
, and
S.
Hanna
,
Liquid Crystalline Polymers
(
Cambridge University Press
,
Cambridge
,
2006
).
17.
S. J.
Woltman
,
G. D.
Jay
, and
G. P.
Crawford
,
Nat. Mater.
6
,
929
(
2007
).
18.
A.
Yethiraj
,
J. Chem. Phys.
101
,
2489
(
1994
).
19.
Z. Y.
Chen
and
S.-M.
Cui
,
Phys. Rev. E
52
,
3876
(
1995
).
20.
F. A.
Escobedo
and
J. J.
dePablo
,
J. Chem. Phys.
106
,
9858
(
1997
).
21.
D.
Micheletti
,
L.
Muccioli
,
R.
Berardi
,
M.
Ricci
, and
C.
Zannoni
,
J. Chem. Phys.
123
,
224705
(
2005
).
22.
J. Z. Y.
Chen
,
D. E.
Sullivan
, and
X.
Yuan
,
Europhys. Lett.
72
,
89
(
2005
).
23.
J. Z. Y.
Chen
,
D. E.
Sullivan
, and
X.
Yuan
,
Macromolecules
40
,
1187
(
2007
).
24.
M.
Turesson
,
J.
Forsman
, and
T.
Akesson
,
Phys. Rev. E
76
,
021801
(
2007
).
25.
V. A.
Ivanov
,
A. S.
Rodionova
,
J. A.
Martemyanova
,
M. R.
Stukan
,
M.
Müller
,
W.
Paul
, and
K.
Binder
,
J. Chem. Phys.
138
,
234903
(
2013
).
26.
V. A.
Ivanov
,
A. S.
Rodionova
,
J. A.
Martemyanova
,
M. R.
Stukan
,
M.
Müller
,
W.
Paul
, and
K.
Binder
,
Macromolecules
47
,
1206
(
2014
).
27.
W.
Zhang
,
E. D.
Gomez
, and
S. T.
Milner
,
Macromolecules
48
,
1454
(
2015
).
28.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Clarendon
,
Oxford
,
1989
).
29.
D. C.
Rapaport
,
The Art of Molecular Dynamics Simulation
, 2nd ed. (
Cambridge University Press
,
Cambridge
,
2004
).
30.
S. A.
Egorov
,
A.
Milchev
,
P.
Virnau
, and
K.
Binder
, “A New Insight into the Isotropic - Nematic Phase Transition in Lyotropic Solutions of Semiflexible Polymers: Density-Functional Theory tested by Molecular Dynamics” (unpublished).
31.
G. S.
Grest
and
K.
Kremer
,
Phys. Rev. A
33
,
3628
(
1986
).
32.
K.
Kremer
and
G. S.
Grest
,
J. Chem. Phys.
92
,
5057
(
1990
).
33.
J. D.
Weeks
,
D.
Chandler
, and
H. C.
Andersen
,
J. Chem. Phys.
54
,
5237
(
1971
).
34.
L.
Schäfer
,
A.
Ostendorf
, and
J.
Hager
,
J. Phys. A. Math. Gen.
32
,
7875
(
1999
).
35.
J. C.
Le Guillou
and
J.
Zinn-Justin
,
Phys. Rev. B
21
,
3976
(
1980
).
36.
H.-P.
Hsu
and
K.
Binder
,
J. Chem. Phys.
136
,
024901
(
2012
).
37.
D.
Shirvanyants
,
S.
Panyukov
,
Q.
Liao
, and
M.
Rubinstein
,
Macromolecules
41
,
1475
(
2008
).
38.
J. P.
Wittmer
,
H.
Meyer
,
J.
Baschnagel
,
A.
Johner
,
S.
Obukhov
,
L.
Mattioni
,
M.
Müller
, and
A. N.
Semenov
,
Phys. Rev. Lett.
93
,
147801
(
2004
).
39.
O.
Kratky
and
G.
Porod
,
Recl. Trav. Chim.
68
,
1106
(
1949
).
40.
S. A.
Egorov
,
H.-P.
Hsu
,
A.
Milchev
, and
K.
Binder
,
Soft Matter
11
,
2604
(
2015
).
41.
A.
Milchev
,
J. Chem. Phys.
143
,
064701
(
2015
).
42.
J.
Anderson
,
C.
Lorenz
, and
A.
Travesset
,
J. Comput. Phys.
227
,
5342
(
2008
).
43.
J.
Glaser
,
T. D.
Nguyen
,
J. A.
Anderson
,
P.
Liu
,
F.
Spiga
,
J. A.
Millan
,
D. C.
Morse
, and
S. C.
Glotzer
,
Comput. Phys. Commun.
192
,
97
(
2015
).
44.
J. H.
Irving
and
J. G.
Kirkwood
,
J. Chem. Phys.
18
,
817
(
1950
).
45.
J. S.
Rowlinson
and
B.
Widom
,
Molecular Theory of Capillarity
(
Clarendon
,
Oxford
,
1982
).
46.
B. D.
Todd
,
D. J.
Evans
, and
P. J.
Daivis
,
Phys. Rev. E
52
,
1627
(
1995
).
47.
R.
Evans
,
Adv. Phys.
28
,
143
(
1979
).
48.
D. P.
Cao
,
M. H.
Zhu
, and
W. C.
Wang
,
J. Phys. Chem. B
110
,
21882
(
2006
).
49.
J.
Forsman
,
C. E.
Woodward
, and
B. C.
Freasier
,
J. Chem. Phys.
118
,
7672
(
2003
).
50.
J.
Forsman
and
C. E.
Woodward
,
Macromolecules
39
,
1269
(
2006
).
51.
H.
Fynewever
and
A.
Yethiraj
,
J. Chem. Phys.
108
,
1636
(
1998
).
52.
D.
Cao
and
J.
Wu
,
J. Chem. Phys.
121
,
4210
(
2004
).
53.
K. M.
Jaffer
,
S. B.
Opps
,
D. E.
Sullivan
,
B. G.
Nickel
, and
L.
Mederos
,
J. Chem. Phys.
114
,
3314
(
2001
).
54.
R.
van Roij
,
M.
Dijkstra
, and
R.
Evans
,
J. Chem. Phys.
113
,
7689
(
2000
).
55.
D.
de las Heras
,
L.
Mederos
, and
E.
Velasco
,
Phys. Rev. E
68
,
031709
(
2003
).
56.
A.
Milchev
,
S. A.
Egorov
, and
K.
Binder
,
J. Chem. Phys.
132
,
184905
(
2010
).
57.
K. G.
Honnell
and
C. K.
Hall
,
J. Chem. Phys.
90
,
1841
(
1989
).
58.
C. N.
Patra
and
S. K.
Ghosh
,
J. Chem. Phys.
106
,
2752
(
1997
).
59.
J. D.
Parsons
,
Phys. Rev. A
19
,
1225
(
1979
).
60.
S. D.
Lee
,
J. Chem. Phys.
87
,
4972
(
1987
).
61.
K.
Shundyak
and
R.
van Roij
,
J. Phys. Cond. Matt.
13
,
4789
(
2001
).
62.
K.
Lichtner
,
A. J.
Archer
, and
S. H. L.
Klapp
,
J. Chem. Phys.
136
,
024502
(
2012
).
63.
M. M.
Telo da Gama
,
Mol. Phys.
52
,
585
(
1984
).
64.
A.
Perera
,
G. N.
Patey
, and
J. J.
Weis
,
J. Chem. Phys.
89
,
6941
(
1988
).
65.
A. A.
Shvets
and
A. N.
Semenov
,
J. Chem. Phys.
139
,
054905
(
2013
).
66.
J.-S.
Wang
and
K.
Binder
,
J. Phys. I
1
,
1583
(
1991
).
67.
M. W.
Matsen
and
P.
Mahmoudi
,
Eur. Phys. J. E
37
,
78
(
2014
).
68.
Y.
Mao
,
P.
Bladdon
,
H. N. W.
Lekkerkerker
, and
M. E.
Cates
,
Mol. Phys.
92
,
151
(
1997
).
69.
T. M.
Birshtein
,
E. B.
Zhulina
, and
A. M.
Skvortsov
,
Biopolymers
18
,
1171
(
1979
).
70.
H.-P.
Hsu
and
K.
Binder
,
Macromolecules
46
,
2496
(
2013
).
You do not currently have access to this content.