We study the complex formation between one long polyanion chain and many short oligocation chains by computer simulations. We employ a coarse-grained bead-spring model for the polyelectrolyte chains and model explicitly the small salt ions. We systematically vary the concentration and the length of the oligocation and examine how the oligocations affects the chain conformation, the static structure factor, the radial and axial distribution of various charged species, and the number of bound ions in the complex. At low oligocation concentration, the polyanion has an extended structure. Upon increasing the oligocation concentration, the polyanion chain collapses and forms a compact globule, but the complex still carries a net negative charge. Once the total charge of the oligocations is equal to that of the polyanion, the collapse stops and is replaced by a slow expansion. In this regime, the net charge on the complexes is positive or neutral, depending on the microion concentration in solution. The expansion can be explained by the reduction of the oligocation bridging. We find that the behavior and the structure of the complex are largely independent of the length of oligocations, and very similar to that observed when replacing the oligocations by multivalent salt cations, and conclude that the main driving force keeping the complex together is the release of monovalent counterions and coions. We speculate on the implications of this finding for the problem of controlled oligolyte release and oligolyte substitution.

1.
F.
Oosawa
,
Polyelectrolyes
(
Marcel Dekker
,
New York
,
1971
).
2.
J.-L.
Barrat
and
J.-F.
Joanny
, “
Theory of polyelectrolye solutions
,”
Adv. Chem. Phys.
94
,
1
(
1996
).
3.
A. V.
Dobrynin
and
M.
Rubinstein
, “
Theory of polyelectrolytes in solutions and at surfaces
,”
Prog. Polym. Sci.
30
,
1049
(
2005
).
4.
R. M.
Fuoss
, “
Polyelectrolyes
,”
Discuss. Faraday Soc.
11
,
125
(
1951
).
5.
A. V.
Dobrynin
,
R. H.
Colby
, and
M.
Rubinstein
, “
Scaling theory of polyelectrolyte solutions
,”
Macromolecules
28
,
1859
(
1995
).
6.
D. W.
Pack
,
A. S.
Hoffman
,
S.
Sun
, and
P. S.
Stayton
, “
Design and development of polymers for gene delivery
,”
Nat. Rev. Drug Discovery
4
,
581
(
2005
).
7.
D. J.
Glover
,
H. J.
Lipps
, and
D. A.
Jans
, “
Towards safe, non-viral therapeutic gene expression in humans
,”
Nat. Rev. Genet.
6
,
299
(
2005
).
8.
K.
Hayashi
,
H.
Chaya
,
S.
Fukushima
,
S.
Watanabe
,
H.
Takemoto
,
K.
Osada
,
N.
Nishiyama
,
K.
Miyata
, and
K.
Kataoka
, “
Influence of RNA strand rigidity on polyion complex formation with block catiomers
,”
Macromol. Rapid Commun.
37
,
486
(
2016
).
9.
V. A.
Bloomfield
, “
DNA condensation by multivalent cations
,”
Biopolymers
44
,
269
(
1997
).
10.
E.
Wagner
,
M.
Zenke
,
M.
Cotten
,
H.
Beug
, and
M.
Birnstiel
, “
Transferrin-polycation conjugates as carriers for DNA uptake into cells
,”
Proc. Natl. Am. Sci. U. S. A.
87
,
3410
(
1990
).
11.
K.
Miyata
,
N.
Nishiyama
, and
K.
Kataoka
, “
Rational design of smart supramolecular assemblies for gene delivery: Chemical challenges in the creation of artificial viruses
,”
Chem. Rev. Soc.
41
,
2562
(
2012
).
12.
U.
Lächelt
and
E.
Wagner
, “
Nucleic acid therapeutics using polyplexes: A journey of 50 years (and beyond)
,”
Chem. Rev.
115
,
11043
(
2015
).
13.
Z.
Ou
and
M.
Muthukumar
, “
Entropy and enthalpy of polyelectrolyte complexation: Langevin dynamics simulations
,”
J. Chem. Phys.
124
,
154902
(
2006
).
14.
S.
Liu
and
M.
Muthukumar
, “
Langevin dynamics simulation of counterion distribution around isolated flexible polyelectrolyte chains
,”
J. Chem. Phys.
116
,
9975
(
2002
).
15.
S.
Liu
,
K.
Ghosh
, and
M.
Muthukumar
, “
Polyelectrolyte solutions with added salt: A simulation study
,”
J. Chem. Phys.
119
,
1813
(
2003
).
16.
Z.
Ou
and
M.
Muthukumar
, “
Langevin dynamics of semiflexible polyelectrolytes: Rod-toroid-globule-coil structures and counterion distribution
,”
J. Chem. Phys.
123
,
074905
(
2005
).
17.
P.-Y.
Hsiao
and
E.
Luijten
, “
Salt-induced collapse and reexpansion of highly charged flexible polyelectrolytes
,”
Phys. Rev. Lett.
97
,
148301
(
2006
).
18.
P.-Y.
Hsiao
, “
Chain morphology, swelling exponent, persistence length, like-charge attraction, and charge distribution around a chain in polyelectrolyte solutions: Effects of salt concentration and ion size studied by molecular dynamics simulations
,”
Macromolecules
39
,
7125
(
2006
).
19.
P.-Y.
Hsiao
, “
Linear polyelectrolytes in tetravalent salt solutions
,”
J. Chem. Phys.
124
,
044904
(
2006
).
20.
D.
Srivastava
and
M.
Muthukumar
, “
Interpenetration of interacting polyelectrolytes
,”
Macromolecules
27
,
1461
(
1994
).
21.
R. G.
Winkler
,
M. O.
Steinhauser
, and
P.
Reineker
, “
Complex formation in systems of oppositely charged polyelectrolytes: A molecular dynamics simulation study
,”
Phys. Rev. E
66
,
021802
(
2002
).
22.
Y.
Hayashi
,
M.
Ullner
, and
P.
Linse
, “
A Monte Carlo study of solutions of oppositely charged polyelectrolytes
,”
J. Chem. Phys.
116
,
6836
(
2002
).
23.
Y.
Hayashi
,
M.
Ullner
, and
P.
Linse
, “
Complex formation in solutions of oppositely charged polyelectrolytes at different polyion compositions and salt content
,”
J. Phys. Chem. B
107
,
8198
(
2003
).
24.
Y.
Hayashi
,
M.
Ullner
, and
P.
Linse
, “
Oppositely charged polyelectrolytes. Complex formation and effects of chain asymmetry
,”
J. Phys. Chem. B
108
,
15266
(
2004
).
25.
R. S.
Dias
,
A. A. C. C.
Pais
,
M. G.
Miguel
, and
B.
Lindman
, “
Modeling of DNA compaction by polycations
,”
J. Chem. Phys.
119
,
8150
(
2003
).
26.
M. J.
Stevens
and
K.
Kremer
, “
The nature of flexible linear polyelectrolytes in salt free solution: A molecular dynamics study
,”
J. Chem. Phys.
103
,
1669
(
1995
).
27.
J. D.
Weeks
,
D.
Chandler
, and
H. C.
Andersen
, “
Role of repulsive forces in determining the equilibrium structure of simple liquids
,”
J. Chem. Phys.
54
,
5237
(
1971
).
28.
R.
Hockney
and
J.
Eastwood
,
Computer Simulation Using Particles
(
Adam Hilger
,
Bristol
,
1988
).
29.
M.
Deserno
and
C.
Holm
, “
How to mesh up Ewald sums. I. A theoretical and numerical comparison of various particle mesh routines
,”
J. Chem. Phys.
109
,
7678
7693
(
1998
).
30.
W. C.
Swope
,
H. C.
Andersen
,
P. H.
Berens
, and
K. R.
Wilson
, “
A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters
,”
J. Chem. Phys.
76
,
637
(
1982
).
31.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation
, 2nd ed. (
Academic Press
,
2002
).
32.
H.
Limbach
,
A.
Arnold
,
B.
Mann
, and
C.
Holm
, “
ESPResSo—An extensible simulation package for research on soft matter systems
,”
Comput. Phys. Commun.
174
,
704
(
2006
).
33.
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
, “
VMD—Visual molecular dynamics
,”
J. Mol. Graphics
14
,
33
(
1996
).
34.
M. O.
de la Cruz
,
L.
Belloni
,
M.
Delsanti
,
J. P.
Dalbiez
,
O.
Spalla
, and
M.
Drifford
, “
Precipitation of highly charged polyelectrolyte solutions in the presence of multivalent salts
,”
J. Chem. Phys.
103
,
5781
(
1995
).
35.
D.
Mukherji
,
C. M.
Marques
, and
K.
Kremer
, “
Polymer collapse in miscible good solvents is a generic phenomenon driven by preferential adsorption
,”
Nat. Commun.
5
,
4882
(
2014
).
36.
B.
Peng
and
M.
Muthukumar
, “
Modeling competitive substitution in a polyelectrolyte complex
,”
J. Chem. Phys.
143
,
243133
(
2015
).
37.
Q.
Leng
,
M. C.
Woodle
,
P. Y.
Lu
, and
A. J.
Mixson
, “
Advances in systemic siRNA delivery
,”
Drugs Fut.
34
,
721
(
2009
).
38.
K. A.
Whitehead
,
R.
Langer
, and
D. G.
Anderson
, “
Knocking down barriers: Advances in siRNA delivery
,”
Nat. Rev. Drug Discovery
8
,
129
(
2009
).
39.
M. E.
Davis
,
J. E.
Zuckerman
,
C. H. J.
Choi
,
D.
Seligson
,
A.
Tolcher
,
C. A.
Alabi
,
Y.
Yen
,
J. D.
Heidel
, and
A.
Ribas
, “
Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles
,”
Nature
464
,
1067
(
2010
).
You do not currently have access to this content.