Iron(iii) oxide (α-Fe2O3) is a known water splitting catalyst commonly used in photoelectrochemical cells. These cells are severely impaired by poor conductivity in α-Fe2O3, and resolving the conductivity issue is therefore crucial. One of the most intrinsic properties of matter, which governs conductivity, is the carrier effective masses. In this work, we investigate the carrier effective masses in α-Fe2O3 and other corundum oxides, including Al2O3, Cr2O3, Ga2O3, and In2O3 with different theoretical constructs: density functional theory (DFT), DFT+U, hybrid DFT, and G0W0. We find DFT sufficiently describes the carrier masses and a quasi-particle theory is only required for accuracies better than 30% for the conduction band effective mass. Additionally, we compare the density of states (DOS) and band effective mass approximations and conclude the DOS effective mass provides poor results whenever the band structure is anisotropic. We find that the charge carriers in Fe2O3 “play the heavy” since they have large effective masses that reduce conductivity and device efficiency. Finally, we conclude that the less heavy electron effective masses of other corundum oxides studied relative to Fe2O3 could contribute to efficiency improvements in Fe2O3 upon Al2O3, Ga2O3, and In2O3 coverage.

1.
K.
Sivula
,
F.
Le Formal
, and
M.
Grätzel
,
ChemSusChem
4
(
4
),
432
449
(
2011
).
2.
A.
Bosman
and
H.
Van Daal
,
Adv. Phys.
19
(
77
),
1
117
(
1970
).
3.
R. H.
Chang
and
J. B.
Wagner
,
J. Am. Ceram. Soc.
55
(
4
),
211
213
(
1972
).
4.
S.
Kerisit
and
K. M.
Rosso
,
J. Chem. Phys.
127
(
12
),
124706
(
2007
).
5.
G.
Kopidakis
,
C. M.
Soukoulis
, and
E. N.
Economou
,
Phys. Rev. B
51
(
21
),
15038
15052
(
1995
).
6.
O.
Neufeld
and
M. C.
Toroker
,
J. Phys. Chem. C
119
(
11
),
5836
5847
(
2015
).
7.
O.
Neufeld
and
M. C.
Toroker
,
Phys. Chem. Chem. Phys.
17
(
37
),
24129
24137
(
2015
).
8.
Y.
Zhang
,
S.
Jiang
,
W.
Song
,
P.
Zhou
,
H.
Ji
,
W.
Ma
,
W.
Hao
,
C.
Chen
, and
J.
Zhao
,
Energy Environ. Sci.
8
(
4
),
1231
1236
(
2015
).
9.
H.
Peng
and
S.
Lany
,
Phys. Rev. B
85
(
20
),
201202
(
2012
).
10.
C.
Xia
,
Y.
Jia
,
M.
Tao
, and
Q.
Zhang
,
Phys. Lett. A
377
(
31
),
1943
1947
(
2013
).
11.
X.
Meng
,
G.
Qin
,
W. A.
Goddard
,
S.
Li
,
H.
Pan
,
X.
Wen
,
Y.
Qin
, and
L.
Zuo
,
J. Phys. Chem. C
117
(
8
),
3779
3784
(
2013
).
12.
O.
Bengone
,
P.
Blöchl
,
M.
Alouani
, and
J.
Hugel
,
Phys. Rev. B
62
,
16392
16401
(
2000
).
13.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
47
(
1
),
558
561
(
1993
).
14.
G.
Kresse
and
J.
Furthmüller
,
Comput. Mater. Sci.
6
(
1
),
15
50
(
1996
).
15.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
(
18
),
3865
(
1996
).
16.
S. L.
Dudarev
,
G. A.
Botton
,
S. Y.
Savrasov
,
C. J.
Humphreys
, and
A. P.
Sutton
,
Phys. Rev. B
57
(
3
),
1505
1509
(
1998
).
17.
N. J.
Mosey
,
P.
Liao
, and
E. A.
Carter
,
J. Chem. Phys.
129
(
1
),
014103
(
2008
).
18.
P.
Liao
,
J. A.
Keith
, and
E. A.
Carter
,
J. Am. Chem. Soc.
134
(
32
),
13296
13309
(
2012
).
19.
Z. D.
Pozun
and
G.
Henkelman
,
J. Chem. Phys.
134
(
22
),
224706
(
2011
).
20.
J.
Paier
,
M.
Marsman
,
K.
Hummer
,
G.
Kresse
,
I. C.
Gerber
, and
J. G.
Ángyán
,
J. Chem. Phys.
124
(
15
),
154709
(
2006
).
21.
J.
Heyd
,
G. E.
Scuseria
, and
M.
Ernzerhof
,
J. Chem. Phys.
118
(
18
),
8207
8215
(
2003
).
22.
J.
Heyd
,
G. E.
Scuseria
, and
M.
Ernzerhof
,
J. Chem. Phys.
124
(
21
),
219906
(
2006
).
23.
L.
Hedin
,
Phys. Rev.
139
(
3A
),
A796
A823
(
1965
).
24.
R. W.
Godby
,
M.
Schlüter
, and
L. J.
Sham
,
Phys. Rev. B
37
(
17
),
10159
10175
(
1988
).
25.
M. S.
Hybertsen
and
S. G.
Louie
,
Phys. Rev. Lett.
55
(
13
),
1418
1421
(
1985
).
26.
P. E.
Blöchl
,
Phys. Rev. B
50
(
24
),
17953
(
1994
).
27.
P. E.
Blöchl
,
O.
Jepsen
, and
O. K.
Andersen
,
Phys. Rev. B
49
(
23
),
16223
(
1994
).
28.
G.
Lehmann
and
M.
Taut
,
Phys. Status Solidi B
54
(
2
),
469
477
(
1972
).
29.
F. J.
Morin
,
Phys. Rev.
78
(
6
),
819
820
(
1950
).
30.
C. W.
Searle
and
G. W.
Dean
,
Phys. Rev. B
1
(
11
),
4337
4342
(
1970
).
31.
B. N.
Brockhouse
,
J. Chem. Phys.
21
(
5
),
961
962
(
1953
).
32.
W.
Setyawan
and
S.
Curtarolo
,
Comput. Mater. Sci.
49
(
2
),
299
312
(
2010
).
33.
K.
Momma
and
F.
Izumi
,
J. Appl. Crystallogr.
41
(
3
),
653
658
(
2008
).
34.
L. W.
Finger
and
R. M.
Hazen
,
J. Appl. Phys.
51
(
10
),
5362
5367
(
1980
).
35.
W. E.
Lee
and
K. P. D.
Lagerlof
,
J. Electron Microsc. Tech.
2
(
3
),
247
258
(
1985
).
36.
M.
Marezio
and
J. P.
Remeika
,
J. Chem. Phys.
46
(
5
),
1862
1865
(
1967
).
37.
A.
Gurlo
,
P.
Kroll
, and
R.
Riedel
,
Chem. – Eur. J.
14
(
11
),
3306
3310
(
2008
).
38.
W.
Wunderlich
,
H.
Ohta
, and
K.
Koumoto
,
Physica B
404
(
16
),
2202
2212
(
2009
).
39.
B.
Van Zeghbroeck
, in
Principles of Semiconductor Devices
(
2007
), Chap. 2, http://ecee.colorado.edu/~bart/book/.
40.
C.
Kittel
,
Introduction to Solid State Physics
(
Wiley
,
2005
).
41.
G.
Hautier
,
A.
Miglio
,
D.
Waroquiers
,
G.-M.
Rignanese
, and
X.
Gonze
,
Chem. Mater.
26
(
19
),
5447
5458
(
2014
).
42.
T. V.
Perevalov
,
A. V.
Shaposhnikov
,
V. A.
Gritsenko
,
H.
Wong
,
J. H.
Han
, and
C. W.
Kim
,
JETP Lett.
85
(
3
),
165
168
(
2007
).
43.
Y.-N.
Xu
and
W. Y.
Ching
,
Phys. Rev. B
43
(
5
),
4461
4472
(
1991
).
44.
A.
Murat
and
J. E.
Medvedeva
,
Phys. Rev. B
85
(
15
),
155101
(
2012
).
45.
H.
He
,
R.
Orlando
,
M. A.
Blanco
,
R.
Pandey
,
E.
Amzallag
,
I.
Baraille
, and
M.
Rérat
,
Phys. Rev. B
74
(
19
),
195123
(
2006
).
46.
N.
Ueda
,
H.
Hosono
,
R.
Waseda
, and
H.
Kawazoe
,
Appl. Phys. Lett.
71
(
7
),
933
935
(
1997
).
47.
S. Z.
Karazhanov
,
P.
Ravindran
,
P.
Vajeeston
,
A.
Ulyashin
,
T. G.
Finstad
, and
H.
Fjellvåg
,
Phys. Rev. B
76
(
7
),
075129
(
2007
).
48.
J.
Rosen
and
O.
Warschkow
,
Phys. Rev. B
80
(
11
),
115215
(
2009
).
49.
F.
Le Formal
,
N.
Tétreault
,
M.
Cornuz
,
T.
Moehl
,
M.
Grätzel
, and
K.
Sivula
,
Chem. Sci.
2
(
4
),
737
743
(
2011
).
50.
T.
Hisatomi
,
F.
Le Formal
,
M.
Cornuz
,
J.
Brillet
,
N.
Tetreault
,
K.
Sivula
, and
M.
Gratzel
,
Energy Environ. Sci.
4
(
7
),
2512
2515
(
2011
).
51.
L.
Steier
,
I.
Herraiz-Cardona
,
S.
Gimenez
,
F.
Fabregat-Santiago
,
J.
Bisquert
,
S. D.
Tilley
, and
M.
Grätzel
,
Adv. Funct. Mater.
24
(
48
),
7681
7688
(
2014
).
52.
O.
Neufeld
,
N.
Yatom
, and
M.
Caspary Toroker
,
ACS Catal.
5
(
12
),
7237
7243
(
2015
).
53.
S.
Wolfram
,
Mathematica: A system for Doing Mathematics by Computer
(
Addison Wesley Longman Publishing Co., Inc.
,
1991
).
54.
See supplementary material at http://dx.doi.org/10.1063/1.4946752 for the PBE+U relaxed geometries and band structures of the bulk corundum oxides, and a comparison of theab initio calculated DOS with fitting of Eqs. (1) and (2)to obtain the DOS effective mass. Moreover, we supply our DOS and band effective mass calculation codes written in Wolfram Mathematica V 9.0,53 which can be directly implemented on VASP output files.

Supplementary Material

You do not currently have access to this content.