We employ dielectric spectroscopy and molecular dynamic simulations to investigate the dipolar dynamics in the orientationally disordered solid phase of (1,1,2,2)tetrachloroethane. Three distinct orientational dynamics are observed as separate dielectric loss features, all characterized by a simply activated temperature dependence. The slower process, associated to a glassy transition at 156 ± 1 K, corresponds to a cooperative motion by which each molecule rotates by 180° around the molecular symmetry axis through an intermediate state in which the symmetry axis is oriented roughly orthogonally to the initial and final states. Of the other two dipolar relaxations, the intermediate one is the Johari-Goldstein precursor relaxation of the cooperative dynamics, while the fastest process corresponds to an orientational fluctuation of single molecules into a higher-energy orientation. The Kirkwood correlation factor of the cooperative relaxation is of the order of one tenth, indicating that the molecular dipoles maintain on average a strong antiparallel alignment during their collective motion. These findings show that the combination of dielectric spectroscopy and molecular simulations allows studying in great detail the orientational dynamics in molecular solids.

1.
M.
Zuriaga
,
L. C.
Pardo
,
P.
Lunkenheimer
,
J. Ll.
Tamarit
,
N.
Veglio
,
M.
Barrio
,
F. J.
Bermejo
, and
A.
Loidl
,
Phys. Rev. Lett.
103
,
075701
(
2009
).
2.
L. C.
Pardo
,
J. Ll.
Tamarit
,
N.
Veglio
,
F. J.
Bermejo
, and
G. J.
Cuello
,
Phys. Rev. B
76
,
134203
(
2007
).
3.
Sz.
Pothoczki
,
A.
Ottochian
,
M.
Rovira-Esteva
,
L. C.
Pardo
,
J. Ll.
Tamarit
, and
G. J.
Cuello
,
Phys. Rev. B
85
,
014202
(
2012
).
4.
J.
Reuter
,
D.
Büsing
,
J. Ll.
Tamarit
, and
A.
Würflinger
,
J. Mater. Chem.
7
,
41
46
(
1997
).
5.
M.
Romanini
,
Ph.
Negrier
,
J. Ll.
Tamarit
,
S.
Capaccioli
,
M.
Barrio
,
L. C.
Pardo
, and
D.
Mondieig
,
Phys. Rev. B
85
,
134201
(
2012
).
6.
R.
Macovez
,
A.
Goldoni
,
L.
Petaccia
,
P. A.
Brühwiler
, and
P.
Rudolf
,
Phys. Rev. Lett.
101
,
236403
(
2008
).
7.
G.
Vdovichenko
,
A.
Krivchikov
,
O.
Korolyuk
,
J. Ll.
Tamarit
,
L. C.
Pardo
,
M.
Rovira-Esteva
,
F. J.
Bermejo
,
M.
Hassaine
, and
M.
Ramos
,
J. Chem. Phys.
143
,
084510
(
2015
).
8.
M.
Rovira-Esteva
,
N. A.
Murugan
,
L. C.
Pardo
,
S.
Busch
,
J. Ll.
Tamarit
,
Sz.
Pothoczki
,
G. J.
Cuello
, and
F. J.
Bermejo
,
Phys. Rev. B
84
,
064202
(
2011
).
9.
Ph.
Negrier
,
M.
Barrio
,
J. Ll.
Tamarit
, and
D.
Mondieig
,
Cryst. Growth Des.
13
,
782
791
(
2013
).
10.
M.
Zachariah
,
M.
Romanini
,
P.
Tripathi
,
M.
Barrio
,
J. Ll.
Tamarit
, and
R.
Macovez
,
J. Phys. Chem. C
119
,
27298
27306
(
2015
).
11.
R.
Brand
,
P.
Lunkenheimer
, and
A.
Loidl
,
J. Chem. Phys.
116
,
10386
10401
(
2002
).
12.
M.
Romanini
,
J. C.
Martinez-Garcia
,
J. Ll.
Tamarit
,
S. J.
Rzoska
,
M.
Barrio
,
L. C.
Pardo
, and
A.
Drozd-Rzoska
,
J. Chem. Phys.
131
,
184504
(
2009
).
13.
A.
Criado
,
M.
Jiménez-Ruiz
,
C.
Cabrillo
,
F. J.
Bermejo
,
R.
Fernández-Perea
,
H. E.
Fischer
, and
F. R.
Trouw
,
Phys. Rev. B
61
,
12082
12093
(
2000
).
14.
M.
Zachariah
,
M.
Romanini
,
P.
Tripathi
,
J. Ll.
Tamarit
, and
R.
Macovez
,
Phys. Chem. Chem. Phys.
17
,
16053
16057
(
2015
).
15.
M.
Bujak
,
D.
Blaser
,
A.
Katrusiak
, and
R.
Boese
,
Chem. Commun.
47
,
8769
8771
(
2011
).
16.
P.
Negrier
,
M.
Barrio
,
J. Ll.
Tamarit
,
D.
Mondieig
,
M. J.
Zuriaga
, and
S. C.
Per.ez
,
Cryst. Growth Des
13
,
2143
2148
(
2013
).
17.
J. P.
Zietlow
,
F. F.
Cleveland
, and
A. G.
Meister
,
J. Chem. Phys.
24
,
142
146
(
1955
).
18.
S. C.
Pérez
,
M.
Zuriaga
,
P.
Serra
,
A.
Wolfenson
,
Ph.
Negrier
, and
J. Ll.
Tamarit
,
J. Chem. Phys.
143
,
134502
(
2015
).
19.
M.
Bujak
and
A.
Katrusiak
,
Z. Kristallogr.
219
,
669
674
(
2004
).
20.
K. S.
Cole
and
R. H.
Cole
,
J. Chem. Phys.
9
,
341
352
(
1941
).
21.
K. S.
Cole
and
R. H.
Cole
,
J. Chem. Phys.
10
,
98
105
(
1942
).
22.
C.
Caleman
,
P. J.
van Maaren
,
M.
Hong
,
J. S.
Hub
,
L. T.
Costa
, and
D.
van der Spoel
,
J. Chem. Theory Comput.
8
,
61
74
(
2012
).
23.
J.
Wang
,
R. M.
Wolf
,
J. W.
Caldwell
,
P. A.
Kollman
, and
D. A.
Case
,
J. Comput. Chem.
25
,
1157
1174
(
2004
).
24.
W. L.
Jorgensen
and
J.
Tirado-Rives
,
Proc. Natl. Acad. Sci. U. S. A.
102
,
6665
6670
(
2005
).
25.
D.
van der Spoel
,
P. J.
van Maaren
, and
C.
Caleman
,
Bioinformatics
28
,
752
753
(
2012
).
26.
B.
Hess
,
C.
Kutzner
,
D.
van der Spoel
, and
E.
Lindahl
,
J. Chem. Theory Comput.
4
,
435
447
(
2008
).
27.
G.
Allen
,
P. N.
Brier
, and
G.
Lane
,
Trans. Faraday Soc.
63
,
824
832
(
1967
).
28.
R. J.
Abraham
and
R.
Stolevik
,
Chem. Phys. Lett.
77
,
181
185
(
1981
).
29.
T.
Rydland
and
R.
Stølevik
,
J. Mol. Struct.: THEOCHEM
105
,
157
168
(
1983
).
30.
F.
Kremer
and
A.
Schönhals
,
Broad Band Dielectric Spectroscopy
(
Springer
,
Berlin
,
2003
).
31.
M.
Bujak
,
M.
Podsiadlo
, and
A.
Katrusiak
,
Chem. Commun.
37
,
4439
4441
(
2008
).
32.
K. L.
Ngai
,
J. Non-Cryst. Solids
353
,
709
718
(
2007
).
33.
G. P.
Johari
and
M.
Goldstein
,
J. Chem. Phys.
53
,
2372
2388
(
1970
).
34.
K. L.
Ngai
,
J. Chem. Phys.
109
,
6982
6994
(
1998
).
35.
J.
Colmenero
,
A.
Arbe
,
G.
Coddens
,
B.
Frick
,
C.
Mijangos
, and
H.
Reinecke
,
Phys. Rev. Lett.
78
,
1928
1931
(
1997
).
36.
F.
Alvarez
,
A.
Alegra
, and
J.
Colmenero
,
Phys. Rev. B
44
,
7306
7312
(
1991
).
37.
F.
Alvarez
,
A.
Alegra
, and
J.
Colmenero
,
Phys. Rev. B
47
,
125
130
(
1993
).
38.
D.
Fragiadakis
and
C. M.
Roland
,
Phys. Rev. E
88
,
042307
(
2013
).
39.
S.
Capaccioli
,
M.
Paluch
,
D.
Prevosto
,
Li-Min
Wang
, and
K. L.
Ngai
,
J. Chem. Phys. Lett.
3
,
735
743
(
2012
).
40.
J. G.
Kirkwood
,
J. Chem. Phys.
7
,
911
(
1939
).
41.
H.
Fröhlich
,
Theory of Dielectrics
(
Oxford University Press
,
London
,
1958
).
42.
J. C.
Martinez-Garcia
,
J. Ll.
Tamarit
,
S.
Capaccioli
,
M.
Barrio
,
N.
Veglio
, and
L. C.
Pardo
,
J. Chem. Phys.
132
,
164516
(
2010
).
You do not currently have access to this content.