Simulated tempering (ST) is a widely used enhancing sampling method for Molecular Dynamics simulations. As one expanded ensemble method, ST is a combination of canonical ensembles at different temperatures and the acceptance probability of cross-temperature transitions is determined by both the temperature difference and the weights of each temperature. One popular way to obtain the weights is to adopt the free energy of each canonical ensemble, which achieves uniform sampling among temperature space. However, this uniform distribution in temperature space may not be optimal since high temperatures do not always speed up the conformational transitions of interest, as anti-Arrhenius kinetics are prevalent in protein and RNA folding. Here, we propose a new method: Enhancing Pairwise State-transition Weights (EPSW), to obtain the optimal weights by minimizing the round-trip time for transitions among different metastable states at the temperature of interest in ST. The novelty of the EPSW algorithm lies in explicitly considering the kinetics of conformation transitions when optimizing the weights of different temperatures. We further demonstrate the power of EPSW in three different systems: a simple two-temperature model, a two-dimensional model for protein folding with anti-Arrhenius kinetics, and the alanine dipeptide. The results from these three systems showed that the new algorithm can substantially accelerate the transitions between conformational states of interest in the ST expanded ensemble and further facilitate the convergence of thermodynamics compared to the widely used free energy weights. We anticipate that this algorithm is particularly useful for studying functional conformational changes of biological systems where the initial and final states are often known from structural biology experiments.

1.
W. F.
van Gunsteren
and
H. J. C.
Berendsen
,
Angew. Chem., Int. Ed. Engl.
29
,
992
(
1990
).
2.
M.
Levitt
,
Nat. Struct. Biol.
8
,
392
(
2001
).
3.
M.
Karplus
and
J. A.
McCammon
,
Nat. Struct. Biol.
9
,
646
(
2002
).
4.
M.
Karplus
and
J.
Kuriyan
,
Proc. Natl. Acad. Sci. U. S. A.
102
,
6679
(
2005
).
5.
L. T.
Da
,
D.
Wang
, and
X.
Huang
,
J. Am. Chem. Soc.
134
,
2399
(
2012
).
6.
D.-A.
Silva
 et al.,
Proc. Natl. Acad. Sci. U. S. A.
111
,
7665
(
2014
).
7.
D.
Hamelberg
,
J.
Mongan
, and
J. A.
McCammon
,
J. Chem. Phys.
120
,
11919
(
2004
).
8.
H.-J.
Woo
and
B.
Roux
,
Proc. Natl. Acad. Sci. U. S. A.
102
,
6825
(
2005
).
9.
R. O.
Dror
 et al.,
Proc. Natl. Acad. Sci. U. S. A.
106
,
4689
(
2009
).
10.
D. A.
Silva
,
G. R.
Bowman
,
A.
Sosa-Peinado
, and
X.
Huang
,
PLoS Comput. Biol.
7
,
e1002054
(
2011
).
11.
J. N.
Onuchic
,
Z.
Luthey-Schulten
, and
P. G.
Wolynes
,
Annu. Rev. Phys. Chem.
48
,
545
(
1997
).
12.
K. A.
Dill
and
H. S.
Chan
,
Nat. Struct. Biol.
4
,
10
(
1997
).
13.
L.
Milanesi
and
J. P.
Waltho
,
Proc. Natl. Acad. Sci. U. S. A.
109
,
19563
(
2012
).
14.
U. H. E.
Hansmann
,
Chem. Phys. Lett.
281
,
140
(
1997
).
15.
Y.
Sugita
and
Y.
Okamoto
,
Chem. Phys. Lett.
314
,
141
(
1999
).
16.
R. H.
Swendsen
and
J.-S.
Wang
,
Phys. Rev. Lett.
57
,
2607
(
1986
).
17.
E.
Marinari
and
G.
Parisi
,
Europhys. Lett.
19
,
451
(
1992
).
18.
A. P.
Lyubartsev
,
A. A.
Martsinovski
,
S. V.
Shevkunov
, and
P. N.
Vorontsov-Velyaminov
,
J. Chem. Phys.
96
,
1776
(
1992
).
19.
R.
Zhou
,
B. J.
Berne
, and
R.
Germain
,
Proc. Natl. Acad. Sci. U. S. A.
98
,
14931
(
2001
).
20.
A. E.
García
and
K. Y.
Sanbonmatsu
,
Proc. Natl. Acad. Sci. U. S. A.
99
,
2782
(
2002
).
21.
C. Y.
Lin
,
C. K.
Hu
, and
U. H. E.
Hansmann
,
Proteins: Struct., Funct., Genet.
52
,
436
(
2003
).
22.
R.
Zhou
,
Proteins: Struct., Funct., Genet.
53
,
148
(
2003
).
23.
N. G.
Sgourakis
,
Y.
Yan
,
S. A.
McCallum
,
C.
Wang
, and
A. E.
Garcia
,
J. Mol. Biol.
368
,
1448
(
2007
).
24.
M.
Karplus
,
J. Phys. Chem. B
104
,
11
(
2000
).
25.
V.
Muñoz
,
P. A.
Thompson
,
J.
Hofrichter
, and
W. A.
Eaton
,
Nature
390
,
196
(
1997
).
26.
A.
Ansari
,
S. V.
Kuznetsov
, and
Y.
Shen
,
Proc. Natl. Acad. Sci. U. S. A.
98
,
7771
(
2001
).
27.
W.
Zhang
and
S.-J.
Chen
,
Proc. Natl. Acad. Sci. U. S. A.
99
,
1931
(
2002
).
28.
T.
Cellmer
,
M.
Buscaglia
,
E. R.
Henry
,
J.
Hofrichter
, and
W. A.
Eaton
,
Proc. Natl. Acad. Sci. U. S. A.
108
,
6103
(
2011
).
29.
W.
Zheng
,
M.
Andrec
,
E.
Gallicchio
, and
R. M.
Levy
,
Proc. Natl. Acad. Sci. U. S. A.
104
,
15340
(
2007
).
30.
D. M.
Zuckerman
and
E.
Lyman
,
J. Chem. Theory Comput.
2
,
1200
(
2006
).
31.
D. A. C.
Beck
,
G. W. N.
White
, and
V.
Daggett
,
J. Struct. Biol.
157
,
514
(
2007
).
32.
A.
Mitsutake
and
Y.
Okamoto
,
Chem. Phys. Lett.
332
,
131
(
2000
).
33.
F.
Wang
and
D. P.
Landau
,
Phys. Rev. Lett.
86
,
2050
(
2001
).
34.
A.
Mitsutake
and
Y.
Okamoto
,
J. Chem. Phys.
121
,
2491
(
2004
).
35.
S.
Park
,
D. L.
Ensign
, and
V. S.
Pande
,
Phys. Rev. E
74
,
1
(
2006
).
37.
X.
Huang
,
G. R.
Bowman
, and
V. S.
Pande
,
J. Chem. Phys.
128
,
205106
(
2008
).
38.
P. H.
Nguyen
,
Y.
Okamoto
, and
P.
Derreumaux
,
J. Chem. Phys.
138
,
61102
(
2013
).
39.
W.
Nadler
and
U. H. E.
Hansmann
,
Phys. Rev. E
75
,
26109
(
2007
).
40.
W.
Nadler
,
J. H.
Meinke
, and
U. H. E.
Hansmann
,
Phys. Rev. E
78
,
61905
(
2008
).
41.
X.
Huang
 et al.,
J. Phys. Chem. B
111
,
5405
(
2007
).
42.
N.
Singhal
,
C. D.
Snow
, and
V. S.
Pande
,
J. Chem. Phys.
121
,
415
(
2004
).
43.
J. D.
Chodera
,
N.
Singhal
,
V. S.
Pande
,
K. A.
Dill
, and
W. C.
Swope
,
J. Chem. Phys.
126
,
155101
(
2007
).
44.
F.
Noé
and
S.
Fischer
,
Curr. Opin. Struct. Biol.
18
,
154
(
2008
).
45.
N.-V.
Buchete
and
G.
Hummer
,
J. Phys. Chem. B
112
,
6057
(
2008
).
46.
V. S.
Pande
,
K.
Beauchamp
, and
G. R.
Bowman
,
Methods
52
,
99
(
2010
).
47.
J.-H.
Prinz
 et al.,
J. Chem. Phys.
134
,
174105
(
2011
).
48.
N. S.
Hinrichs
and
V. S.
Pande
,
J. Chem. Phys.
126
,
244101
(
2007
).
49.
G. R.
Bowman
,
D. L.
Ensign
, and
V. S.
Pande
,
J. Chem. Theory Comput.
6
,
787
(
2010
).
50.
T.
Zhou
and
A.
Caflisch
,
J. Chem. Theory Comput.
8
,
2134
(
2012
).
51.
X.
Huang
,
G. R.
Bowman
,
S.
Bacallado
, and
V. S.
Pande
,
Proc. Natl. Acad. Sci. U. S. A.
106
,
19765
(
2009
).
52.
A. S. J. S.
Mey
,
H.
Wu
, and
F.
Noé
,
Phys. Rev. X
4
,
41018
(
2014
).
53.
H.
Wu
,
A. S. J. S.
Mey
,
E.
Rosta
, and
F.
Noé
,
J. Chem. Phys.
141
,
214106
(
2014
).
54.
E.
Rosta
and
G.
Hummer
,
J. Chem. Theory Comput.
11
,
276
(
2015
).
55.
N.
Metropolis
,
A. W.
Rosenbluth
,
M. N.
Rosenbluth
,
A. H.
Teller
, and
E.
Teller
,
J. Chem. Phys.
21
,
1087
(
1953
).
56.
S.
Park
and
V. S.
Pande
,
Phys. Rev. E
76
,
16703
(
2007
).
57.
C.
Zhang
and
J.
Ma
,
J. Chem. Phys.
129
,
134112
(
2008
).
58.
S.
Rauscher
,
C.
Neale
, and
R.
Pomès
,
J. Chem. Theory Comput.
5
,
2640
(
2009
).
59.
D.
Sindhikara
,
Y.
Meng
, and
A. E.
Roitberg
,
J. Chem. Phys.
128
,
24103
(
2008
).
60.
N.
Plattner
 et al.,
J. Chem. Phys.
135
,
134111
(
2011
).
61.
P.
Dupuis
,
Y.
Liu
,
N.
Plattner
, and
J. D.
Doll
,
Multiscale Model. Simul.
10
,
986
(
2012
).
62.
N.
Plattner
,
J. D.
Doll
, and
M.
Meuwly
,
J. Chem. Theory Comput.
9
,
4215
(
2013
).
63.
Y. Q.
Gao
,
J. Chem. Phys.
128
,
64105
(
2008
).
64.
L.
Yang
and
Y. Q.
Gao
,
J. Chem. Phys.
131
,
214109
(
2009
).
65.
L.
Yang
,
C.-W.
Liu
,
Q.
Shao
,
J.
Zhang
, and
Y. Q.
Gao
,
Acc. Chem. Res.
48
,
947
(
2015
).
66.
G. R.
Bowman
and
V. S.
Pande
,
Proc. Natl. Acad. Sci. U. S. A.
107
,
10890
(
2010
).
67.
G. R.
Bowman
,
V. A.
Voelz
, and
V. S.
Pande
,
J. Am. Chem. Soc.
133
,
664
(
2011
).
68.
V. A.
Voelz
 et al.,
J. Am. Chem. Soc.
134
,
12565
(
2012
).
69.
J.
Nocedal
and
S. J.
Wright
,
Numerical Optimization
,
Springer Series in Operations Research and Financial Engineering
(
Springer-Verlag
,
New York
,
1999
).
70.
R.
Zwanzig
,
Proc. Natl. Acad. Sci. U. S. A.
92
,
9801
(
1995
).
71.
V.
Hornak
 et al.,
Proteins: Struct., Funct., Bioinf.
65
,
712
(
2006
).
72.
W. L.
Jorgensen
,
D. S.
Maxwell
, and
J.
Tirado-Rives
,
J. Am. Chem. Soc.
118
,
11225
(
1996
).
73.
T.
Darden
,
D.
York
, and
L.
Pedersen
,
J. Chem. Phys.
98
,
10089
(
1993
).
74.
S.
Nosé
,
J. Chem. Phys.
81
,
511
(
1984
).
75.
W.
Zheng
,
M. A.
Rohrdanz
, and
C.
Clementi
,
J. Phys. Chem. B
117
,
12769
(
2013
).
76.
J.
Preto
and
C.
Clementi
,
Phys. Chem. Chem. Phys.
16
,
19181
(
2014
).
77.
M. A.
Rohrdanz
,
W.
Zheng
, and
C.
Clementi
,
Annu. Rev. Phys. Chem.
64
,
295
(
2013
).
78.
M. H.
Zaman
,
T. R.
Sosnick
, and
S. R.
Berry
,
Phys. Chem. Chem. Phys.
5
,
2589
(
2003
).
79.
See supplementary material at http://dx.doi.org/10.1063/1.4946793 for detailed results.
80.
M. H.
Viet
,
P.
Derreumaux
, and
P. H.
Nguyen
,
J. Chem. Phys.
143
,
021101
(
2015
).
81.
T. F.
Gonzalez
,
Theor. Comput. Sci.
38
,
293
(
1985
).

Supplementary Material

You do not currently have access to this content.