The electrochemical and structural properties of the electrical double layers for two-component electrolytes were studied by Monte Carlo simulations using simple models. When the electrolyte contains two species of cations that have different diameters, the capacitance on the cathode dramatically increases as a large negative potential is applied. This behavior is qualitatively similar to the one reported in an experimental work that has used Li-containing ionic liquid as the electrolyte [M. Yamagata et al., Electrochim. Acta 110, 181-190 (2013)], in which it has also been reported that addition of Li ions to the electrolyte enhances the potential window to the negative side. The analysis of the ionic structure showed that the electrical double layer on the cathode is dominantly formed by the larger cations under small negative potentials, while they are replaced by the smaller cations under large negative potentials. This transition of the ionic structure with electrode potential is also consistent with the enhancement of the potential window that was found in the experimental work, which suggests that the organic cations are expelled from the electrical double layer under large negative potentials and the chance of decomposition is reduced.

1.
B.
Scrosati
,
Nature
373
,
557
(
1995
).
2.
S.
Megahed
and
B.
Scrosati
,
J. Power Sources
51
,
79
(
1994
).
3.
J.
Van Mierlo
and
G.
Maggetto
,
Fuel Cells
7
,
165
(
2007
).
4.
F. T.
Wagner
,
B.
Lakshmanan
, and
M. F.
Mathias
,
J. Phys. Chem. Lett.
1
,
2204
(
2010
).
5.
M. S.
Whittingham
,
Proc. IEEE
100
,
1518
(
2012
).
6.
J. Y.
Song
,
Y. Y.
Wang
, and
C. C.
Wan
,
J. Power Sources
77
,
183
(
1999
).
7.
F. B.
Dias
,
L.
Plomp
, and
J. B. J.
Veldhuis
,
J. Power Sources
88
,
169
(
2000
).
8.
M.
Armand
,
F.
Endres
,
D. R.
MacFarlane
,
H.
Ohno
, and
B.
Scrosati
,
Nat. Mater.
8
,
621
(
2009
).
9.
M.
Galinski
,
A.
Lewandowski
, and
I.
Stepniak
,
Electrochim. Acta
51
,
5567
(
2006
).
10.
R. T.
Carlin
,
J.
Fuller
, and
M.
Hedenskoog
,
J. Electrochem. Soc.
141
,
L21
(
1994
).
11.
S.
Seki
 et al,
Electrochem. Solid-State Lett.
8
,
A577
(
2005
).
12.
S. K.
Martha
,
E.
Markevich
,
V.
Burgel
,
G.
Salitra
,
E.
Zinigrad
,
B.
Markovsky
,
H.
Sclar
,
Z.
Pramovich
,
O.
Heik
,
D.
Aurbach
,
I.
Exnar
,
H.
Buqa
,
T.
Drezen
,
G.
Semrau
,
M.
Schmidt
,
D.
Kovacheva
, and
N.
Saliyski
,
J. Power Sources
189
,
288
(
2009
).
13.
M.
Holzapfel
,
C.
Jost
, and
P.
Novk
,
Chem. Commun.
2004
,
2098
.
14.
Y.
Katayama
,
M.
Yukumoto
, and
T.
Miura
,
Electrochem. Solid-State Lett.
6
,
A96
(
2003
).
15.
M.
Ishikawa
,
T.
Sugimoto
,
M.
Kikuta
,
E.
Ishiko
, and
M.
Kono
,
J. Power Sources
162
,
658
662
(
2006
).
16.
Y.
Matsui
,
S.
Kawaguchi
,
T.
Sugimoto
,
M.
Kikuta
,
T.
Higashizaki
,
M.
Kono
,
M.
Yamagata
, and
M.
Ishikawa
,
Electrochemistry
80
,
808
(
2012
).
17.
M.
Yamagata
,
Y.
Matsui
,
T.
Sugimoto
,
M.
Kikuta
,
T.
Higashizaki
,
M.
Kono
, and
M.
Ishikawa
,
J. Power Sources
227
,
60
(
2013
).
18.
Y.
Matsui
,
M.
Yamagata
,
S.
Murakami
,
Y.
Saito
,
T.
Higashizaki
,
E.
Ishiko
,
M.
Kono
, and
M.
Ishikawa
,
J. Power Sources
279
,
766
(
2015
).
19.
B. E.
Conway
,
Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications
(
Kluwer Academic/Publishers
,
New York
,
1999
).
20.
E.
Frackowiak
and
F.
Bguin
,
Carbon
39
,
937
(
2001
).
21.
M.
Ue
,
Electrochim. Acta
39
,
2083
(
1994
).
22.
C.
Nanjundiah
,
S. F.
McDevitt
, and
V. R.
Koch
,
J. Electrochem. Soc.
144
,
3392
(
1997
).
23.
M.
Ue
,
M.
Takeda
,
T.
Takahashi
, and
M.
Takehara
,
Electrochem. Solid-State Lett.
5
,
A119
(
2002
).
24.
A.
Lewandowski
and
M.
Galinski
,
J. Phys. Chem. Solids
65
,
281
(
2004
).
25.
T.
Sato
,
G.
Masuda
, and
K.
Takagi
,
Electrochim. Acta
49
,
3603
(
2004
).
26.
K.
Matsumoto
and
R.
Hagiwara
,
J. Electrochem. Soc.
157
,
A578
(
2010
).
27.
N.
Handa
,
T.
Sugimoto
,
M.
Yamagata
,
M.
Kikuta
,
M.
Kono
, and
M.
Ishikawa
,
J. Power Sources
185
,
1585
(
2008
).
28.
M.
Yamagata
,
N.
Nishigaki
,
S.
Nishishita
,
Y.
Matsui
,
T.
Sugimoto
,
M.
Kikuta
,
T.
Higashizaki
,
M.
Kono
, and
M.
Ishikawa
,
Electrochim. Acta
110
,
181
190
(
2013
).
29.
S.
Tsuzuki
,
K.
Hayamizu
, and
S.
Seki
,
J. Phys. Chem. B
114
,
16329
(
2010
).
30.
M.
Yamagata
,
M.
Hirayama
,
S.
Nishishita
,
D.
Horikawa
, and
M.
Ishikawa
,
Electrochemistry
81
,
857
(
2013
).
31.
M.
Mezger
,
H.
Schröder
,
H.
Reichert
,
S.
Schramm
,
J. S.
Okasinski
,
S.
Schöder
,
V.
Honkimäki
,
M.
Deutsch
,
B. M.
Ocko
,
J.
Ralston
,
M.
Rohwerder
,
M.
Stratmann
, and
H.
Dosch
,
Science
322
,
424
(
2008
).
32.
S.
Perkin
,
L.
Crowhurst
,
H.
Niedermeyer
,
T.
Welton
,
A. M.
Smith
, and
N. N.
Gosvami
,
Chem. Commun.
47
,
6572
(
2011
).
33.
R.
Atkin
,
S. Z.
El Abedin
,
R.
Hayes
,
L. H. S.
Gasparotto
,
N.
Borisenko
, and
F.
Endres
,
J. Phys. Chem. C
113
,
13266
(
2009
).
34.
R.
Atkin
,
N.
Borisenko
,
M.
Drüschler
,
S. Z.
El Abedin
,
F.
Endres
,
R.
Hayes
,
B.
Huber
, and
B.
Roling
,
Phys. Chem. Chem. Phys.
13
,
6849
(
2011
).
35.
F.
Endres
,
N.
Borisenko
,
S. Z.
El Abedin
,
R.
Hayes
, and
R.
Atkin
,
Faraday Discuss.
154
,
221
(
2012
).
36.
G.
Gouy
,
J. Phys. Theor. Appl.
9
,
457
(
1910
).
37.
D.
Chapman
,
Philos. Mag.
25
,
475
(
1913
).
38.
J. P.
Valleau
and
G. M.
Torrie
,
J. Chem. Phys.
76
,
4623
(
1982
).
39.
H.
Wennerström
,
B.
Jönsson
, and
P.
Linse
,
J. Chem. Phys.
76
,
4665
(
1982
).
40.
G. M.
Torrie
,
J. P.
Valleau
, and
G. N.
Pattey
,
J. Chem. Phys.
76
,
4615
(
1982
).
41.
H.
Greberg
and
R.
Kjellander
,
J. Chem. Phys.
108
,
2940
(
1998
).
42.
D.
Gillespie
,
M.
Valisko
, and
D.
Boda
,
J. Phys.: Condens. Matter
17
,
6609
(
2005
).
43.
G. M.
Torrie
and
J. P.
Valleau
,
J. Chem. Phys.
73
,
5807
(
1980
).
44.
P. S.
Crozier
,
R. L.
Rowley
, and
D.
Henderson
,
J. Chem. Phys.
114
,
7513
(
2001
).
45.
A.
Delville
,
J. Phys. Chem. B
106
,
7860
(
2002
).
46.
M.
Quesada-Pérez
,
A.
Martín-Molina
, and
R.
Hidalgo-Álvarez
,
J. Chem. Phys.
121
,
8618
(
2004
).
47.
M. V.
Fedorov
,
N.
Georgi
, and
A. A.
Kornyshev
,
Electrochem. Commun.
12
,
296
(
2010
).
48.
C.
Merlet
,
M.
Salanne
, and
B.
Rotenberg
,
J. Phys. Chem. C
116
,
7687
(
2012
).
49.
C.
Merlet
,
B.
Rotenberg
,
P. A.
Madden
,
P.-L.
Taberna
,
P.
Simon
,
Y.
Gogotsi
, and
M.
Salanne
,
Nat. Mater.
11
,
306
(
2012
).
50.
J.
Vatamanu
,
O.
Borodin
, and
G. D.
Smith
,
J. Am. Chem. Soc.
132
,
14825
(
2010
).
51.
J.
Vatamanu
,
L.
Cao
,
O.
Borodin
,
D.
Bedrov
, and
G. D.
Smith
,
J. Phys. Chem. Lett.
2
,
2267
(
2011
).
52.
A.
Uysal
,
H.
Zhou
,
G.
Feng
,
S. S.
Lee
,
S.
Li
,
P.
Fenter
,
P. T.
Cummings
,
P. F.
Fulvio
,
S.
Dai
,
J. K.
McDonough
, and
Y.
Gogotsi
,
J. Phys. Chem. C
118
,
569
(
2014
).
53.
M.
Valisco
,
D.
Boda
, and
D.
Gillespie
,
J. Phys. Chem. C
111
,
15575
(
2007
).
54.
K.
Kiyohara
,
H.
Shioyama
,
T.
Sugino
,
K.
Asaka
,
Y.
Soneda
,
K.
Imoto
, and
M.
Kodama
,
J. Chem. Phys.
138
,
234704
(
2013
).
55.
H.
Niedermeyer
,
J. P.
Hallett
,
I. J.
Villar-Garcia
,
P. A.
Hunt
, and
T.
Welton
,
Chem. Soc. Rev.
41
,
7780
(
2012
).
56.
M.
Valisco
,
D.
Henderson
, and
D.
Boda
,
J. Phys. Chem. B
108
,
16548
(
2004
).
57.
K.
Kiyohara
,
T.
Sugino
, and
K.
Asaka
,
J. Chem. Phys.
132
,
144705
(
2010
).
58.
W.
Steele
,
Surf. Sci.
36
,
317
(
1973
).
59.
Y. F.
Yin
,
B.
McEnaney
, and
T. J.
Mays
,
Carbon
36
,
1425
(
1998
).
60.
K.
Kiyohara
,
T.
Sugino
, and
K.
Asaka
, Japan patent JP5831862 (9 December 2015);
K.
Kiyohara
,
T.
Sugino
, and
K.
Asaka
, in AIChE Annual Meeting, 2010 ;
K.
Kiyohara
,
T.
Sugino
, and
K.
Asaka
,
J. Chem. Phys.
134
,
154710
(
2011
).
[PubMed]
61.
K.
Kiyohara
,
H.
Shioyama
,
T.
Sugino
, and
K.
Asaka
,
J. Chem. Phys.
136
,
094701
(
2012
).
62.
H.
Weingärtner
,
Angew. Chem., Int. Ed.
47
,
654
(
2008
).
63.
C.
Schröder
,
M.
Haberler
, and
O.
Steinhauser
,
J. Chem. Phys.
128
,
134501
(
2008
).
64.
E. I.
Izgorodina
,
M.
Forsyth
, and
D. R.
MacFarlane
,
Phys. Chem. Chem. Phys.
11
,
2452
(
2009
).
65.
K.
Kiyohara
and
K.
Asaka
,
J. Chem. Phys.
126
,
214704
(
2007
).
66.
M. Z.
Bazant
,
M. S.
Kilic
,
B. D.
Storey
, and
A.
Ajdari
,
Adv. Colloid Interface Sci.
152
,
48
(
2009
).
67.
K.
Kiyohara
and
K.
Asaka
,
J. Phys. Chem. C
111
,
15903
(
2007
).
68.
M. S.
Kilic
and
M.
Bazant
,
Phys. Rev. E
75
,
021502
(
2007
).
69.
A. A.
Kornyshev
,
J. Phys. Chem. B
111
,
5545
(
2007
).
70.
S.
Lamperski
,
J.
Sosnowska
,
L. B.
Bhuiyan
, and
D.
Henderson
,
J. Chem. Phys.
140
,
014704
(
2014
).
71.
N.
Nishi
,
A.
Hashimoto
,
E.
Minami
, and
T.
Sakka
,
Phys. Chem. Chem. Phys.
17
,
5219
(
2015
).
72.
S.
Asakura
and
F.
Oosawa
,
J. Chem. Phys.
22
,
1255
(
1954
).
73.
Y.
Levin
,
Rep. Prog. Phys.
65
,
1577
(
2002
).
74.
A. Y.
Grosberg
,
T. T.
Nguyen
, and
B. I.
Shklovskii
,
Rev. Mod. Phys.
74
,
329
(
2002
).
75.
A. G.
Moreira
and
R. R.
Netz
,
Eur. Phys. J. E
8
,
33
(
2002
).
76.
D.
Henderson
and
D.
Boda
,
Phys. Chem. Chem. Phys.
11
,
3822
(
2009
).
You do not currently have access to this content.