The thermal conductivity of low-density CH4–N2 gas mixtures has been calculated by means of the classical trajectory method using state-of-the-art intermolecular potential energy surfaces for the CH4–CH4, N2–N2, and CH4–N2 interactions. Results are reported in the temperature range from 70 K to 1200 K. Since the thermal conductivity is influenced by the vibrational degrees of freedom of the molecules, which are not included in the rigid-rotor classical trajectory computations, a new correction scheme to account for vibrational degrees of freedom in a dilute gas mixture is presented. The calculations show that the vibrational contribution at the highest temperature studied amounts to 46% of the total thermal conductivity of an equimolar mixture compared to 13% for pure nitrogen and 58% for pure methane. The agreement with the available experimental thermal conductivity data at room temperature is good, within ±1.4%, whereas at higher temperatures, larger deviations up to 4.5% are observed, which can be tentatively attributed to deteriorating performance of the measuring technique employed. Results are also reported for the magnitude and temperature dependence of the rotational collision number, Zrot, for CH4 relaxing in collisions with N2 and for N2 relaxing in collisions with CH4. Both collision numbers increase with temperature, with the former being consistently about twice the value of the latter.

1.
F. R. W.
McCourt
,
J. J. M.
Beenakker
,
W. E.
Köhler
, and
I.
Kuščer
,
Nonequilibrium Phenomena in Polyatomic Gases, Vol. I: Dilute Gases
(
Clarendon Press
,
Oxford
,
1990
).
2.
R.
Hellmann
,
J. B.
Mehl
, and
V.
Vesovic
, in
Experimental Thermodynamics Volume IX: Advances in Transport Properties of Fluids
, edited by
M. J.
Assael
,
A. R. H.
Goodwin
,
V.
Vesovic
, and
W. A.
Wakeham
(
The Royal Society of Chemistry
,
Cambridge
,
2014
), Chap. 7.2, pp.
234
252
.
3.
R.
Hellmann
,
E.
Bich
,
E.
Vogel
, and
V.
Vesovic
,
Phys. Chem. Chem. Phys.
13
,
13749
(
2011
).
4.
R.
Hellmann
,
Chem. Phys. Lett.
613
,
133
(
2014
).
5.
R.
Hellmann
,
E.
Bich
,
E.
Vogel
, and
V.
Vesovic
,
J. Chem. Eng. Data
57
,
1312
(
2012
).
6.
S. E.
Quiñones Cisneros
,
K. A. G.
Schmidt
,
B. R.
Giri
,
P.
Blais
, and
R. A.
Marriott
,
J. Chem. Eng. Data
57
,
3014
(
2012
).
7.
J.-P.
Crusius
,
R.
Hellmann
,
E.
Hassel
, and
E.
Bich
,
J. Chem. Phys.
141
,
164322
(
2014
).
8.
J.-P.
Crusius
,
R.
Hellmann
,
E.
Hassel
, and
E.
Bich
,
J. Chem. Phys.
142
,
244307
(
2015
).
9.
R.
Hellmann
and
E.
Vogel
,
J. Chem. Eng. Data
60
,
3600
(
2015
).
10.
R.
Hellmann
,
E.
Bich
,
E.
Vogel
, and
V.
Vesovic
,
J. Chem. Phys.
141
,
224301
(
2014
).
11.
R.
Hellmann
,
E.
Bich
, and
E.
Vogel
,
J. Chem. Phys.
128
,
214303
(
2008
).
13.
R.
Hellmann
,
E.
Bich
,
E.
Vogel
,
A. S.
Dickinson
, and
V.
Vesovic
,
J. Chem. Phys.
130
,
124309
(
2009
).
14.
R.
Hellmann
and
E.
Bich
,
Mol. Phys.
113
,
176
(
2015
).
15.
E.
Bich
,
S.
Bock
, and
E.
Vogel
,
Physica A
311
,
59
(
2002
).
16.
S.
Bock
,
E.
Bich
,
E.
Vogel
,
A. S.
Dickinson
, and
V.
Vesovic
,
J. Chem. Phys.
120
,
7987
(
2004
).
17.
Z.
Liang
and
H.-L.
Tsai
,
Fluid Phase Equilib.
297
,
40
(
2010
).
18.
Z.
Liang
and
H.-L.
Tsai
,
Mol. Phys.
108
,
1707
(
2010
).
19.
L.
Waldmann
, “
Transporterscheinungen in Gasen von mittlerem Druck
,” in
Handbuch der Physik
, edited by
S.
Flügge
(
Springer-Verlag
,
Berlin
,
1958
), Vol.
12
, pp.
295
514
.
20.
L.
Waldmann
and
E.
Trübenbacher
,
Z. Naturforsch. A
17
,
363
(
1962
).
21.
J. H.
Ferziger
and
H. G.
Kaper
,
The Mathematical Theory of Transport Processes in Gases
(
North-Holland
,
Amsterdam
,
1972
).
22.
C. F.
Curtiss
,
J. Chem. Phys.
75
,
1341
(
1981
).
23.
M.
Mustafa
, “
Measurement and calculation of transport properties of polyatomic gases
,” Ph.D. thesis,
Imperial College London
, London, UK,
1987
.
24.
E. L.
Heck
and
A. S.
Dickinson
,
Comput. Phys. Commun.
95
,
190
(
1996
).
25.
A. S.
Dickinson
,
R.
Hellmann
,
E.
Bich
, and
E.
Vogel
,
Phys. Chem. Chem. Phys.
9
,
2836
(
2007
).
26.
C. M.
Muckenfuss
and
C. F.
Curtiss
,
J. Chem. Phys.
29
,
1273
(
1958
).
27.
L.
Monchick
,
K. S.
Yun
, and
E. A.
Mason
,
J. Chem. Phys.
39
,
654
(
1963
).
28.
H. E.
Khalifa
,
J.
Kestin
, and
W. A.
Wakeham
,
Physica A
97
,
273
(
1979
).
29.
C. S.
Wang Chang
,
G. E.
Uhlenbeck
, and
J.
de Boer
,
Studies in Statistical Mechanics
(
North-Holland
,
Amsterdam
,
1964
), pp.
243
268
.
30.
J. O.
Hirschfelder
, in
Proceedings of the Joint Conference on Thermodynamic and Transport Properties of Fluids
,
London
,
10–12 July 1957
(
Institution of Mechanical Engineers
,
London
,
1958
), pp.
133
141
.
31.
32.
S. I.
Sandler
and
E. A.
Mason
,
J. Chem. Phys.
48
,
2873
(
1968
).
34.
D. K.
Dysthe
,
A. H.
Fuchs
, and
B.
Rousseau
,
Int. J. Thermophys.
19
,
437
(
1998
).
35.
A. S.
Dickinson
,
A.
Ern
, and
V.
Vesovic
,
Mol. Phys.
103
,
1895
(
2005
).
36.
See supplementary material at http://dx.doi.org/10.1063/1.4945014 for the extension of the approach of Bich and co-workers to mixtures and for the thermal conductivity values calculated in this work.
37.
U.
Setzmann
and
W.
Wagner
,
J. Phys. Chem. Ref. Data
20
,
1061
(
1991
).
38.
R.
Span
,
E. W.
Lemmon
,
R. T.
Jacobsen
,
W.
Wagner
, and
A.
Yokozeki
,
J. Phys. Chem. Ref. Data
29
,
1361
(
2000
).
39.
B. J.
Thijsse
,
G. W.
’t Hooft
,
D. A.
Coombe
,
H. F. P.
Knaap
, and
J. J. M.
Beenakker
,
Physica A
98
,
307
(
1979
).
40.
M. J.
Ross
,
V.
Vesovic
, and
W. A.
Wakeham
,
Physica A
183
,
519
(
1992
).
41.
V.
Vesovic
and
W. A.
Wakeham
,
Physica A
201
,
501
(
1993
).
42.
R.
Hellmann
and
V.
Vesovic
, results for N2, CO, and H2S (unpublished).
43.
R.
Hellmann
,
N.
Riesco
, and
V.
Vesovic
,
J. Chem. Phys.
138
,
084309
(
2013
).
44.
G. C.
Maitland
,
M.
Rigby
,
E. B.
Smith
, and
W. A.
Wakeham
,
Intermolecular Forces: Their Origin and Determination
(
Clarendon Press
,
Oxford
,
1987
).
45.
S.
Bock
,
E.
Bich
,
E.
Vogel
,
A. S.
Dickinson
, and
V.
Vesovic
,
J. Chem. Phys.
117
,
2151
(
2002
).
46.
R.
Hellmann
,
E.
Bich
,
E.
Vogel
,
A. S.
Dickinson
, and
V.
Vesovic
,
J. Chem. Phys.
129
,
064302
(
2008
).
47.
J.
Bzowski
,
J.
Kestin
,
E. A.
Mason
, and
F. J.
Uribe
,
J. Phys. Chem. Ref. Data
19
,
1179
(
1990
).
48.
M.
Schreiber
,
V.
Vesovic
, and
W. A.
Wakeham
,
Int. J. Thermophys.
18
,
925
(
1997
).
49.
A.
Ern
,
A. S.
Dickinson
, and
V.
Vesovic
,
Chem. Phys.
310
,
311
(
2005
).
50.
A.
Ern
and
V.
Giovangigli
,
Multicomponent Transport Algorithms
,
Lecture Notes in Physics Monographs
Vol.
24
(
Springer-Verlag
,
1994
).
51.
V.
Vesovic
,
W. A.
Wakeham
,
A. S.
Dickinson
,
F. R. W.
McCourt
, and
M.
Thachuk
,
Mol. Phys.
84
,
553
(
1995
).
52.
W. H.
Clingman
,
R. S.
Brokaw
, and
R. N.
Pease
,
Symp. Combust.
4
,
310
(
1953
).
53.
J.
Kestin
,
Y.
Nagasaka
, and
W. A.
Wakeham
,
Ber. Bunsenges. Phys. Chem.
86
,
632
(
1982
).
54.
J.
Pátek
and
J.
Klomfar
,
Fluid Phase Equilib.
198
,
147
(
2002
).
55.
J.
Pátek
,
J.
Klomfar
,
L.
Čapla
, and
P.
Buryan
,
Int. J. Thermophys.
24
,
923
(
2003
).
56.
S. H.
Jawad
, “
Thermal conductivity of polyatomic gases
,” Ph.D. thesis,
Imperial College London, London, UK
,
1999
.
57.
W. A.
Wakeham
, in
Proceedings of the 30th International Thermal Conductivity Conference and the 18th International Thermal Expansion Symposium
, edited by
D. S.
Gaal
(
DEStech Publications
,
Lancaster, PA
,
2010
), pp.
14
37
.
58.
E.
Vogel
,
B.
Jäger
,
R.
Hellmann
, and
E.
Bich
,
Mol. Phys.
108
,
3335
(
2010
).

Supplementary Material

You do not currently have access to this content.