The local pseudopotential (LPP) is an important component of orbital-free density functional theory, a promising large-scale simulation method that can maintain information on a material’s electron state. The LPP is usually extracted from solid-state density functional theory calculations, thereby it is difficult to assess its transferability to cases involving very different chemical environments. Here, we reveal a fundamental relation between the first-principles norm-conserving pseudopotential (NCPP) and the LPP. On the basis of this relationship, we demonstrate that the LPP can be constructed optimally from the NCPP for a large number of elements using the optimized effective potential method. Specially, our method provides a unified scheme for constructing and assessing the LPP within the framework of first-principles pseudopotentials. Our practice reveals that the existence of a valid LPP with high transferability may strongly depend on the element.

1.
Y. A.
Wang
and
E. A.
Carter
,
Theoretical Methods in Condensed Phase Chemistry
(
Springer
,
2002
), pp.
117
184
.
2.
V. V.
Karasiev
and
S. B.
Trickey
,
Comput. Phys. Commun.
183
,
2519
(
2012
).
3.
T. A.
Wesolowski
,
Recent Progress in Orbital-Free Density Functional Theory
,
Recent Advances in Computational Chemistry
(
World Scientific Publishing Company
,
2013
).
4.
V. V.
Karasiev
,
D.
Chakraborty
, and
S.
Trickey
,
Many-Electron Approaches in Physics, Chemistry and Mathematics
(
Springer
,
2014
), pp.
113
134
.
5.
I.
Shin
and
E. A.
Carter
,
Modell. Simul. Mater. Sci. Eng.
20
,
015006
(
2012
).
6.
A. M.
Vora
,
Phys. Chem. Liq.
48
,
723
(
2010
).
7.
V.
Lignres
and
E.
Carter
, in
Handbook of Materials Modeling
, edited by
S.
Yip
(
Springer
,
Netherlands
,
2005
), pp.
137
148
.
8.
B.
Zhou
,
V. L.
Ligneres
, and
E. A.
Carter
,
J. Chem. Phys.
122
,
044103
(
2005
).
9.
N.
Bhatt
,
P.
Vyas
,
A.
Jani
, and
V.
Gohel
,
J. Phys. Chem. Solids
66
,
797
(
2005
).
10.
H.
Jiang
and
W.
Yang
,
J. Chem. Phys.
121
,
2030
(
2004
).
11.
D. J.
González
,
L. E.
González
,
J. M.
López
, and
M. J.
Stott
,
J. Chem. Phys.
115
,
2373
(
2001
).
12.
M.
Pearson
,
E.
Smargiassi
, and
P.
Madden
,
J. Phys.: Condens. Matter
5
,
3221
(
1993
).
13.
M. S.
Daw
and
M. I.
Baskes
,
Phys. Rev. B
29
,
6443
(
1984
).
14.
M. S.
Daw
and
M. I.
Baskes
,
Phys. Rev. Lett.
50
,
1285
(
1983
).
15.
C.
Huang
and
E. A.
Carter
,
Phys. Rev. B
81
,
045206
(
2010
).
16.
J.
Xia
,
C.
Huang
,
I.
Shin
, and
E. A.
Carter
,
J. Chem. Phys.
136
,
084102
(
2012
).
17.
W. E.
Pickett
,
Comput. Phys. Rep.
9
,
115
(
1989
).
18.
D.
Vanderbilt
,
Phys. Rev. B
41
,
7892
(
1990
).
19.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
B864
(
1964
).
20.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
21.
L.
Goodwin
,
R.
Needs
, and
V.
Heine
,
J. Phys.: Condens. Matter
2
,
351
(
1990
).
22.
C.
Fiolhais
,
J. P.
Perdew
,
S. Q.
Armster
,
J. M.
MacLaren
, and
M.
Brajczewska
,
Phys. Rev. B
51
,
14001
(
1995
).
23.
C.
Fiolhais
,
J. P.
Perdew
,
S. Q.
Armster
,
J. M.
MacLaren
, and
M.
Brajczewska
,
Phys. Rev. B
53
,
13193
(
1996
).
24.
S.
Watson
,
B.
Jesson
,
E.
Carter
, and
P.
Madden
,
Europhys. Lett.)
41
,
37
(
1998
).
25.
B. J.
Jesson
and
P. A.
Madden
,
J. Chem. Phys.
113
,
5924
(
2000
).
26.
B.
Zhou
,
Y.
Alexander Wang
, and
E. A.
Carter
,
Phys. Rev. B
69
,
125109
(
2004
).
27.
B.
Wang
and
M. J.
Stott
,
Phys. Rev. B
68
,
195102
(
2003
).
28.
B.
Zhou
and
E. A.
Carter
,
J. Chem. Phys.
122
,
184108
(
2005
).
29.
C.
Huang
and
E. A.
Carter
,
Phys. Chem. Chem. Phys.
10
,
7109
(
2008
).
30.
T.
Grabo
,
T.
Kreibich
,
S.
Kurth
, and
E.
Gross
, in
Strong Coulomb Correlations in Electronic Structure Calculations: Beyond Local Density Approximations
, edited by
V.
Anisimov
(
Gordon and Breach Science Publishers, Amsterdam
,
2000
), Vol.
203
.
31.
32.
J.
Krieger
,
Y.
Li
, and
G.
Iafrate
,
Density Functional Theory
, edited by
E. K. U.
Gross
and
R. M.
Dreizler
(
Plenum Press
,
New York
,
1995
), p.
191
.
33.
D. M.
Bylander
and
L.
Kleinman
,
Phys. Rev. B
52
,
14566
(
1995
).
35.
S.
Kümmel
and
J. P.
Perdew
,
Phys. Rev. B
68
,
035103
(
2003
).
36.
D. R.
Hamann
,
M.
Schlüter
, and
C.
Chiang
,
Phys. Rev. Lett.
43
,
1494
(
1979
).
37.
N.
Troullier
and
J. L.
Martins
,
Phys. Rev. B
43
,
1993
(
1991
).
38.
M.
Fuchs
and
M.
Scheffler
,
Comput. Phys. Commun.
119
,
67
(
1999
).
39.
See supplementary material at http://dx.doi.org/10.1063/1.4944989 for detailed derivation of the OEP equation for OEPP and test results of pseudo-atoms.
40.
S. G.
Louie
,
S.
Froyen
, and
M. L.
Cohen
,
Phys. Rev. B
26
,
1738
(
1982
).
41.
L.
Kleinman
and
D. M.
Bylander
,
Phys. Rev. Lett.
48
,
1425
(
1982
).
42.
M.
Segall
,
P. J.
Lindan
,
M. J.
Probert
,
C.
Pickard
,
P.
Hasnip
,
S.
Clark
, and
M.
Payne
,
J. Phys.: Condens. Matter
14
,
2717
(
2002
).
43.
D. M.
Ceperley
and
B. J.
Alder
,
Phys. Rev. Lett.
45
,
566
(
1980
).
44.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
45.
W.
Mi
,
X.
Shao
,
C.
Su
,
Y.
Zhou
,
S.
Zhang
,
Q.
Li
,
H.
Wang
,
L.
Zhang
,
M.
Miao
,
Y.
Wang
 et al.,
Comput. Phys. Commun.
200
,
87
(
2016
).
46.
Y. A.
Wang
,
N.
Govind
, and
E. A.
Carter
,
Phys. Rev. B
60
,
16350
(
1999
).
48.
G. B.
Bachelet
,
D. R.
Hamann
, and
M.
Schlüter
,
Phys. Rev. B
26
,
4199
(
1982
).
49.
G.
Kerker
,
J. Phys. C: Solid State Phys.
13
,
L189
(
1980
).
50.
D.
Vanderbilt
,
Phys. Rev. B
32
,
8412
(
1985
).
53.
J.
Lehtomäki
,
I.
Makkonen
,
M. A.
Caro
,
A.
Harju
, and
O.
Lopez-Acevedo
,
J. Chem. Phys.
141
,
234102
(
2014
).

Supplementary Material

You do not currently have access to this content.