A plethora of active matter models exist that describe the behavior of self-propelled particles (or swimmers), both with and without hydrodynamics. However, there are few studies that consider shape-anisotropic swimmers and include hydrodynamic interactions. Here, we introduce a simple method to simulate self-propelled colloids interacting hydrodynamically in a viscous medium using the lattice-Boltzmann technique. Our model is based on raspberry-type viscous coupling and a force/counter-force formalism, which ensures that the system is force free. We consider several anisotropic shapes and characterize their hydrodynamic multipolar flow field. We demonstrate that shape-anisotropy can lead to the presence of a strong quadrupole and octupole moments, in addition to the principle dipole moment. The ability to simulate and characterize these higher-order moments will prove crucial for understanding the behavior of model swimmers in confining geometries.

1.
S.
Ramaswamy
,
Annu. Rev. Condens. Matter Phys.
1
,
323
(
2010
).
2.
M.
Marchetti
 et al,
Rev. Mod. Phys.
85
,
1143
(
2013
).
3.
R.
Ismagilov
,
A.
Schwartz
,
N.
Bowden
, and
G.
Whitesides
,
Angew. Chem., Int. Ed.
41
,
652
(
2002
).
4.
W. F.
Paxton
 et al,
J. Am. Chem. Soc.
126
,
13424
(
2004
).
5.
S. J.
Ebbens
and
J. R.
Howse
,
Soft Matter
6
,
726
(
2010
).
6.
Y.
Hong
,
D.
Velegol
,
N.
Chaturvedi
, and
A.
Sen
,
Phys. Chem. Chem. Phys.
12
,
1423
(
2010
).
7.
S.
Sengupta
,
M. E.
Ibele
, and
A.
Sen
,
Angew. Chem., Int. Ed.
51
,
8434
(
2012
).
8.
W.
Wang
,
W.
Duan
,
S.
Ahmed
,
T. E.
Mallouk
, and
A.
Sen
,
Nano Today
8
,
531
(
2013
).
9.
S.
Sánchez
,
L.
Soler
, and
J.
Katuri
,
Angew. Chem., Int. Ed.
54
,
1414
(
2015
).
11.
M.
Cates
and
J.
Tailleur
,
Annu. Rev. Condens. Matter Phys.
6
,
219
(
2015
).
12.
H.-L.
Lien
and
W.-x.
Zhang
,
J. Environ. Eng.
125
,
1042
(
1999
).
13.
B. J.
Nelson
,
I. K.
Kaliakatsos
, and
J. J.
Abbott
,
Annu. Rev. Biomed. Eng.
12
,
55
(
2010
).
14.
W.
Wang
 et al,
Angew. Chem., Int. Ed.
53
,
3201
(
2014
).
15.
D.
Helbing
,
I.
Farkas
, and
T.
Vicsek
,
Nature
407
,
487
(
2000
).
16.
M.
Ballerini
 et al,
Proc. Natl. Acad. Sci. U. S. A.
105
,
1232
(
2008
).
17.
Y.
Katz
,
K.
Tunstrøm
,
C.
Ioannou
,
C.
Huepe
, and
I.
Couzin
,
Proc. Natl. Acad. Sci. U. S. A.
108
,
18720
(
2011
).
18.
19.
20.
I.
Riedel
,
K.
Kruse
, and
J.
Howard
,
Science
309
,
300
(
2005
).
21.
R.
Ma
,
G.
Klindt
,
I.
Riedel-Kruse
,
F.
Jülicher
, and
B.
Friedrich
,
Phys. Rev. Lett.
113
,
048101
(
2014
).
22.
A.
Sokolov
,
I.
Aranson
,
J.
Kessler
, and
R.
Goldstein
,
Phys. Rev. Lett.
98
,
158102
(
2007
).
23.
J.
Schwarz-Linek
 et al,
Proc. Natl. Acad. Sci. U. S. A.
109
,
4052
(
2012
).
24.
25.
M.
Polin
,
I.
Tuval
,
K.
Drescher
,
J.
Gollub
, and
R.
Goldstein
,
Science
325
,
487
(
2009
).
26.
V.
Geyer
,
F.
Jülicher
,
J.
Howard
, and
B.
Friedrich
,
Proc. Natl. Acad. Sci. U. S. A.
110
,
18058
(
2013
).
27.
E.
Purcell
,
Am. J. Phys.
45
,
3
(
1977
).
28.
E.
Lauga
and
T.
Powers
,
Rep. Prog. Phys.
72
,
096601
(
2009
).
29.
S.
Spagnolie
and
E.
Lauga
,
J. Fluid Mech.
700
,
105
(
2012
).
30.
L.
Zhu
,
E.
Lauga
, and
L.
Brandt
,
J. Fluid Mech.
726
,
285
(
2013
).
31.
W.
Uspal
,
M.
Popescu
,
S.
Dietrich
, and
M.
Tasinkevych
,
Soft Matter
11
,
434
(
2014
).
32.
A.
Mathijssen
,
A.
Doostmohammadi
,
J.
Yeomans
, and
T.
Shendruk
,
J. R. Soc. Interface
13
,
20150936
(
2016
).
33.
D.
Pushkin
and
J.
Yeomans
,
Phys. Rev. Lett.
111
,
188101
(
2013
).
34.
A.
Morozov
and
D.
Marenduzzo
,
Soft Matter
10
,
2748
(
2014
).
35.
A.
Mathijssen
,
D.
Pushkin
, and
J.
Yeomans
,
J. Fluid Mech.
773
,
498
(
2015
).
36.
H.
Wensink
and
H.
Löwen
,
J. Phys.: Condens. Matter
24
,
464130
(
2012
).
37.
H. H.
Wensink
and
H.
Löwen
,
Phys. Rev. E
78
,
031409
(
2008
).
38.
A.
Kaiser
,
K.
Popowa
,
H. H.
Wensink
, and
H.
Löwen
,
Phys. Rev. E
88
,
022311
(
2013
).
39.
R.
Nash
,
R.
Adhikari
, and
M.
Cates
,
Phys. Rev. E
77
,
026709
(
2008
).
40.
R.
Nash
,
R.
Adhikari
,
J.
Tailleur
, and
M.
Cates
,
Phys. Rev. Lett.
104
,
258101
(
2010
).
41.
J.
Hernandez-Ortiz
,
C.
Stoltz
, and
M.
Graham
,
Phys. Rev. Lett.
95
,
204501
(
2005
).
42.
D.
Saintillan
and
M.
Shelley
,
Phys. Rev. Lett.
99
,
058102
(
2007
).
43.
J.
Swan
,
J.
Brady
,
R.
Moore
, and
C.
174
,
Phys. Fluid
23
,
071901
(
2011
).
44.
R.
Singh
,
S.
Ghose
, and
R.
Adhikari
,
J. Stat. Mech.
2015
,
P06017
.
45.
R.
Di Leonardo
,
D.
Dell’Arciprete
,
L.
Angelani
, and
V.
Iebba
,
Phys. Rev. Lett.
106
,
038101
(
2011
).
46.
E.
Lushi
,
H.
Wioland
, and
R. E.
Goldstein
,
Proc. Nat. Acad. Sci. USA
111
,
9733
(
2014
).
47.
F.
Kümmel
 et al,
Phys. Rev. Lett.
110
,
198302
(
2013
).
48.
M.
Lighthill
,
Commun. Pure Appl. Math.
5
,
109
(
1952
).
49.
50.
I.
Pagonabarraga
and
I.
Llopis
,
Soft Matter
9
,
7174
(
2013
).
51.
G.-J.
Li
and
A.
Ardekani
,
Phys. Rev. E
90
,
013010
(
2014
).
52.
J.
Lintuvuori
,
A.
Brown
,
K.
Stratford
, and
D.
Marenduzzo
, e-print arXiv:1508.04255 (2015).
53.
M.
Downton
and
H.
Stark
,
J. Phys.: Condens. Matter
21
,
204101
(
2009
).
54.
A.
Zöttl
and
H.
Stark
,
Phys. Rev. Lett.
112
,
118101
(
2014
).
55.
K.
Schaar
,
A.
Zöttl
, and
H.
Stark
,
Phys. Rev. Lett.
115
,
038101
(
2015
).
56.
T.
Ishikawa
,
J.
Locsei
, and
T.
Pedley
,
J. Fluid Mech.
615
,
401
(
2008
).
57.
A.
Doostmohammadi
,
R.
Stocker
, and
A.
Ardekani
,
Proc. Natl. Acad. Sci. U. S. A.
109
,
3856
(
2012
).
58.
J.
Molina
,
Y.
Nakayama
, and
R.
Yamamoto
,
Soft Matter
9
,
4923
(
2013
).
59.
R.
Matas-Navarro
,
R.
Golestanian
,
T.
Liverpool
, and
S. M.
Fielding
,
Phys. Rev. E
90
,
032304
(
2014
).
60.
B.
Delmotte
,
E.
Keaveny
,
F.
Plouraboué
, and
E.
Climent
,
J. Comput. Phys.
302
,
524
(
2015
).
61.
T.
Ishikawa
,
M.
Simmonds
, and
T.
Pedley
,
J. Fluid Mech.
568
,
119
(
2006
).
62.
Y.-G.
Tao
and
R.
Kapral
,
J. Chem. Phys.
128
,
164518
(
2008
).
63.
J.
Elgeti
,
U.
Kaupp
, and
G.
Gompper
,
Biophys. J.
99
,
1018
(
2010
).
64.
F.
Lugli
,
E.
Brini
, and
F.
Zerbetto
,
J. Phys. Chem. C
116
,
592
(
2012
).
65.
J.
Hu
,
M.
Yang
,
G.
Gompper
, and
R.
Winkler
,
Soft Matter
11
,
7867
(
2015
).
66.
H.
Wu
 et al,
Phys. Rev. E
92
,
050701
(
2015
).
67.
P.
Ahlrichs
and
B.
Dünweg
,
J. Chem. Phys.
111
,
8225
(
1999
).
68.
V.
Lobaskin
and
B.
Dünweg
,
New J. Phys.
6
,
54
(
2004
).
69.
L.
Fischer
,
T.
Peter
,
C.
Holm
, and
J.
de Graaf
,
J. Chem. Phys.
143
,
084107
(
2015
).
70.
J.
de Graaf
,
T.
Peter
,
L.
Fischer
, and
C.
Holm
,
J. Chem. Phys.
143
,
084108
(
2015
).
71.
H.-R.
Jiang
,
N.
Yoshinaga
, and
M.
Sano
,
Phys. Rev. Lett.
105
,
268302
(
2010
).
72.
T.
Bickel
,
A.
Majee
, and
A.
Würger
,
Phys. Rev. E
88
,
012301
(
2013
).
73.
J.
de Graaf
,
G.
Rempfer
, and
C.
Holm
,
IEEE Trans. NanoBiosci.
14
,
272
(
2015
).
74.
S.
Samin
and
R.
van Roij
,
Phys. Rev. Lett.
115
,
188305
(
2015
).
75.
J.
de Graaf
 et al, “
Understanding Oscillatory Swimming in Microchannels
,”
Soft Matter
(submitted).
76.
77.
D.
Roehm
and
A.
Arnold
,
Eur. Phys. J.: Spec. Top.
210
,
73
(
2012
).
78.
H. J.
Limbach
,
A.
Arnold
,
B. A.
Mann
, and
C.
Holm
,
Comput. Phys. Commun.
174
,
704
(
2006
).
79.
A.
Arnold
 et al, “
ESPResSo 3.1—Molecular dynamics software for coarse-grained models
,” in
Meshfree Methods for Partial Differential Equations VI
, edited by
M.
Griebel
and
M. A.
Schweitzer
,
Lecture Notes in Computational Science and Engineering
Vol.
89
(
Springer
,
2013
), p.
1
.
80.
D.
d’Humières
,
I.
Ginzburg
,
M.
Krafczyk
,
P.
Lallemand
, and
L.-S.
Luo
,
Philos. Trans. R. Soc., A
360
,
437
(
2002
).
81.
R.
Zwanzig
and
M.
Bixon
,
J. Fluid Mech.
69
,
21
(
1975
).
82.
M.
Tirado
,
C.
Martinez
, and
J.
de la Torre
,
J. Chem. Phys.
81
,
2047
(
1984
).
83.

The absence of source terms is specific to the LB force/counter-force raspberry swimmer. That is, there are no sources or sinks of the LB fluid. However, other models such as the squirmer48,49 can have source-dipole contributions that must be considered in fitting the data.

You do not currently have access to this content.