This work consists of the adaptation of a non-additive hard sphere theory inspired by Malakhov and Volkov [Polym. Sci., Ser. A 49(6), 745–756 (2007)] to a square-well chain. Using the thermodynamic perturbation theory, an additional term is proposed that describes the effect of perturbing the chain of square well spheres by a non-additive parameter. In order to validate this development, NPT Monte Carlo simulations of thermodynamic and structural properties of the non-additive square well for a pure chain and a binary mixture of chains are performed. Good agreements are observed between the compressibility factors originating from the theory and those from molecular simulations.
REFERENCES
1.
W. G.
Chapman
, K. E.
Gubbins
, G.
Jackson
, and M.
Radosz
, “SAFT: Equation-of state solution model for associating fluids
,” Fluid Phase Equilib.
52
, 31
–38
(1989
).2.
W. G.
Chapman
, K. E.
Gubbins
, G.
Jackson
, and M.
Radosd
, “New reference equation of state for associating liquids
,” Ind. Eng. Chem. Res.
29
, 1709
–1721
(1990
).3.
T.-B.
Nguyen
, J.-C.
de Hemptinne
, B.
Creton
, and G. M.
Kontogeorgis
, “Improving GC-PPC-SAFT equation of state for LLE of hydrocarbons and oxygenated compounds with water
,” Fluid Phase Equilib.
372
, 113
–125
(2014
).4.
D. J.
Adams
and I. R.
McDonald
, “Fluids of hard spheres with nonadditive diameters
,” J. Chem. Phys.
63
(5
), 1900
(1975
).5.
E.
Dickinson
, “On the thermodynamics of polydisperse systems of non-additive hard particles
,” Chem. Phys. Lett.
66
(3
), 500
–504
(1979
).6.
D.
Gazzillo
, “Fluid–fluid phase separation of nonadditive hard-sphere mixtures as predicted by integral-equation theories
,” J. Chem. Phys.
95
(6
), 4565
(1991
).7.
K.
Jagannathan
, G.
Reddy
, and A.
Yethiraj
, “Integral equation theory for symmetric nonadditive hard sphere mixtures
,” J. Phys. Chem. B
109
(14
), 6764
–6768
(2005
).8.
M.
Rovere
and G.
Pastore
, “Fluid-fluid phase separation in binary mixtures of asymmetric non-additive hard spheres
,” J. Phys.: Condens. Matter
6
(23A
), A163
–A166
(1994
).9.
F.
Saija
and P. V.
Giaquinta
, “Entropy and fluid–fluid separation in nonadditive hard-sphere mixtures: The asymmetric case
,” J. Phys. Chem. B
106
, 2035
–2040
(1998
).10.
A.
Santos
, M.
López De Haro
, and S. B.
Yuste
, “Equation of state of nonadditive d-dimensional hard-sphere mixtures
,” J. Chem. Phys.
122
(2
), 024514-1
–024514-15
(2005
).11.
H.
Hammawa
and E. Z.
Hamad
, “A simple model for size non-additive mixtures
,” J. Chem. Soc., Faraday Trans.
92
(24
), 4943
–4949
(1996
).12.
B. F.
Abu-Sharkh
and E. Z.
Hamad
, “Simulation and model development for the equation of state of self-assembling nonadditive hard chains
,” Macromolecules
33
(4
), 1345
–1350
(2000
).13.
B. F.
Abu-Sharkh
and E. Z.
Hamad
, “Investigation of the microstructure of micelles formed by hard-sphere chains interacting via size nonadditivity by discontinuous molecular dynamics simulation
,” Langmuir
20
(1
), 254
–259
(2004
).14.
J.
Gross
and G.
Sadowski
, “Application of perturbation theory to a hard-chain reference fluid: An equation of state for square-well chains
,” Fluid Phase Equilib.
168
, 183
–199
(2000
).15.
J.
Gross
and G.
Sadowski
, “Perturbed-chain SAFT: An equation of state based on a perturbation theory for chain molecules
,” Ind. Eng. Chem. Res.
40
(4
), 1244
–1260
(2001
).16.
A. O.
Malakhov
and V. V.
Volkov
, “Phase behavior of polymer mixtures with nonadditive hard-sphere potential
,” Polym. Sci., Ser. A
49
(6
), 745
–756
(2007
).17.
M.
Banaszak
, Y. C.
Chiew
, and M.
Radosz
, “Thermodynamic perturbation theory: Sticky chains and square-well chains
,” Phys. Rev. E
48
(5
), 3760
–3765
(1993
).18.
H.
Adidharma
and M.
Radosz
, “Prototype of an engineering equation of state for heterosegmented
,” Ind. Eng. Chem. Res.
37
(11
), 4453
–4462
(1998
).19.
A.
Gil-Villegas
, A.
Galindo
, P. J.
Whitehead
, S. J.
Mills
, G.
Jackson
, and A. N.
Burgess
, “Statistical associating fluid theory for chain molecules with attractive potentials of variable range
,” J. Chem. Phys.
106
(10
), 4168
(1997
).20.
F. W.
Tavares
, J.
Chang
, and S. I.
Sandler
, “A completely analytic equation of state for the square-well chain fluid of variable well width
,” Fluid Phase Equilib.
140
, 129
–143
(1997
).21.
J. P.
Hansen
and I. R.
McDonald
, Theory of Simple Liquids
, 3rd ed. (Academic Press
, London, England
, 2005
).22.
M. L. L.
Paredes
, R. A.
dos Reis
, and F. W.
Tavares
, “Inner segment radial distribution functions at contact point for chain-like molecules
,” J. Mol. Liq.
147
(3
), 198
–210
(2009
).23.
Y. C.
Chiew
, “Percus-Yevick integral-equation theory for athermal hard-sphere chains. Part I. Equations of state
,” Mol. Phys.
70
(1
), 129
–143
(1990
).24.
Y. C.
Chiew
, “Percus-Yevick integral equation theory for athermal hard-sphere chains
,” Mol. Phys.
73
(2
), 359
–373
(1991
).25.
A.
Yethiraj
, C. K.
Hall
, and K. G.
Honnell
, “Site–site correlations in short chain fluids
,” J. Chem. Phys.
93
(6
), 4453
–4461
(1990
).26.
K. G.
Honnell
and C. K.
Hall
, “A new equation of state for athermal chains
,” J. Chem. Phys.
90
(3
), 1841
–1855
(1989
).27.
R.
Dickman
and C. K.
Hall
, “Equation of state for chain molecules: Continuous-space analog of Flory theory
,” J. Chem. Phys.
85
(7
), 4108
–4115
(1986
).28.
F. W.
Tavares
, J.
Chang
, and S. I.
Sandler
, “Equation of state for the square-well chain fluid based on the dimer version of Wertheim’s perturbation theory
,” Mol. Phys.
86
(6
), 1451
–1471
(1995
).29.
J. G.
Kirkwood
, E. K.
Maun
, and B. J.
Alder
, “Radial distribution functions and the equation of state of a fluid composed of rigid spherical molecules
,” J. Chem. Phys.
18
(8
), 1040
–1047
(1950
).30.
K. U.
Co
, J. J.
Kozak
, and K. D.
Luks
, “Solutions of the Yvon–Born–Green equation for the square-well fluid at very high densities
,” J. Chem. Phys.
65
(6
), 2327
–2332
(1976
).31.
W. W.
Lincoln
, J. J.
Kozak
, and K. D.
Luks
, “Properties of solutions to the Yvon–Born–Green equation for the square-well fluid
,” J. Chem. Phys.
62
(6
), 2171
–2182
(1975
).32.
J. G.
Kirkwood
, V. A.
Lewinson
, and B. J.
Alder
, “Radial distribution functions and the equation of state of fluids composed of molecules interacting according to the Lennard-Jones potential
,” J. Chem. Phys.
20
(6
), 929
–938
(1952
).33.
A. A.
Broyle
, “Radial distribution functions from the Born-Green integral equation
,” J. Chem. Phys.
33
(2
), 456
–458
(1960
).34.
J. A.
Porter
, S. V.
Fridrikh
, and J. E. G.
Lipson
, “Square-well chain fluids: The thermodynamic properties of hexamers, octamers, and hexadecamers
,” J. Chem. Phys.
119
(7
), 3883
–3890
(2003
).35.
M. P.
Taylor
, J.
Luettmer-Strathmann
, and J. E. G.
Lipson
, “Structure and phase behavior of square-well dimer fluids
,” J. Chem. Phys.
114
(13
), 5654
–5662
(2001
).36.
S. V.
Fridrikh
and J. E. G.
Lipson
, “Square-well fluids: The statistical and thermodynamic properties of short chains
,” J. Chem. Phys.
116
(19
), 8483
–8491
(2002
).37.
J.
Largo
, J. R.
Solana
, S. B.
Yuste
, and A.
Santos
, “Pair correlation function of short-ranged square-well fluids
,” J. Chem. Phys.
122
(8
), 084510-1
–084510-12
(2005
).38.
D.
Henderson
, W. G.
Madden
, and D. D.
Fitts
, “Monte Carlo and hypernetted chain equation of state for the square-well fluid
,” J. Chem. Phys.
64
, 5026
(1976
).39.
K. D.
Scarfe
, I. L.
McLaughlin
, and A. F.
Collings
, “The transport coefficients for a fluid of square-well rough spheres: Comparison with methane
,” J. Chem. Phys.
65
, 2991
(1976
).40.
M. P.
Taylor
, “Square-well diatomics exact low density results
,” Mol. Phys.
64
, 1151
(1994
).41.
M. P.
Taylor
and J. E. G.
Lipson
, “A site–site Born–Green–Yvon equation for hard sphere dimers
,” J. Chem. Phys.
100
, 518
(1994
).42.
M. L. L.
Paredes
, R.
Nobrega
, and F. W.
Tavares
, “Square-well chain mixture: Analytic equation of state and Monte Carlo simulation data
,” Fluid Phase Equilib.
179
, 245
–267
(2001
).43.
M. P.
Allen
and D. J.
Tildesley
, Computer Simulation of Liquids
(Oxford University Press
, 1987
).44.
P.
Paricaud
, “Phase equilibria in polydisperse nonadditive hard-sphere systems
,” Phys. Rev. E
78
(2
), 021202
(2008
).45.
See supplementary material at http://dx.doi.org/10.1063/1.4944068 for all of the Monte Carlo simulation conditions and results obtained in this work.
© 2016 AIP Publishing LLC.
2016
AIP Publishing LLC
You do not currently have access to this content.