This work consists of the adaptation of a non-additive hard sphere theory inspired by Malakhov and Volkov [Polym. Sci., Ser. A 49(6), 745–756 (2007)] to a square-well chain. Using the thermodynamic perturbation theory, an additional term is proposed that describes the effect of perturbing the chain of square well spheres by a non-additive parameter. In order to validate this development, NPT Monte Carlo simulations of thermodynamic and structural properties of the non-additive square well for a pure chain and a binary mixture of chains are performed. Good agreements are observed between the compressibility factors originating from the theory and those from molecular simulations.

1.
W. G.
Chapman
,
K. E.
Gubbins
,
G.
Jackson
, and
M.
Radosz
, “
SAFT: Equation-of state solution model for associating fluids
,”
Fluid Phase Equilib.
52
,
31
38
(
1989
).
2.
W. G.
Chapman
,
K. E.
Gubbins
,
G.
Jackson
, and
M.
Radosd
, “
New reference equation of state for associating liquids
,”
Ind. Eng. Chem. Res.
29
,
1709
1721
(
1990
).
3.
T.-B.
Nguyen
,
J.-C.
de Hemptinne
,
B.
Creton
, and
G. M.
Kontogeorgis
, “
Improving GC-PPC-SAFT equation of state for LLE of hydrocarbons and oxygenated compounds with water
,”
Fluid Phase Equilib.
372
,
113
125
(
2014
).
4.
D. J.
Adams
and
I. R.
McDonald
, “
Fluids of hard spheres with nonadditive diameters
,”
J. Chem. Phys.
63
(
5
),
1900
(
1975
).
5.
E.
Dickinson
, “
On the thermodynamics of polydisperse systems of non-additive hard particles
,”
Chem. Phys. Lett.
66
(
3
),
500
504
(
1979
).
6.
D.
Gazzillo
, “
Fluid–fluid phase separation of nonadditive hard-sphere mixtures as predicted by integral-equation theories
,”
J. Chem. Phys.
95
(
6
),
4565
(
1991
).
7.
K.
Jagannathan
,
G.
Reddy
, and
A.
Yethiraj
, “
Integral equation theory for symmetric nonadditive hard sphere mixtures
,”
J. Phys. Chem. B
109
(
14
),
6764
6768
(
2005
).
8.
M.
Rovere
and
G.
Pastore
, “
Fluid-fluid phase separation in binary mixtures of asymmetric non-additive hard spheres
,”
J. Phys.: Condens. Matter
6
(
23A
),
A163
A166
(
1994
).
9.
F.
Saija
and
P. V.
Giaquinta
, “
Entropy and fluid–fluid separation in nonadditive hard-sphere mixtures: The asymmetric case
,”
J. Phys. Chem. B
106
,
2035
2040
(
1998
).
10.
A.
Santos
,
M.
López De Haro
, and
S. B.
Yuste
, “
Equation of state of nonadditive d-dimensional hard-sphere mixtures
,”
J. Chem. Phys.
122
(
2
),
024514-1
024514-15
(
2005
).
11.
H.
Hammawa
and
E. Z.
Hamad
, “
A simple model for size non-additive mixtures
,”
J. Chem. Soc., Faraday Trans.
92
(
24
),
4943
4949
(
1996
).
12.
B. F.
Abu-Sharkh
and
E. Z.
Hamad
, “
Simulation and model development for the equation of state of self-assembling nonadditive hard chains
,”
Macromolecules
33
(
4
),
1345
1350
(
2000
).
13.
B. F.
Abu-Sharkh
and
E. Z.
Hamad
, “
Investigation of the microstructure of micelles formed by hard-sphere chains interacting via size nonadditivity by discontinuous molecular dynamics simulation
,”
Langmuir
20
(
1
),
254
259
(
2004
).
14.
J.
Gross
and
G.
Sadowski
, “
Application of perturbation theory to a hard-chain reference fluid: An equation of state for square-well chains
,”
Fluid Phase Equilib.
168
,
183
199
(
2000
).
15.
J.
Gross
and
G.
Sadowski
, “
Perturbed-chain SAFT: An equation of state based on a perturbation theory for chain molecules
,”
Ind. Eng. Chem. Res.
40
(
4
),
1244
1260
(
2001
).
16.
A. O.
Malakhov
and
V. V.
Volkov
, “
Phase behavior of polymer mixtures with nonadditive hard-sphere potential
,”
Polym. Sci., Ser. A
49
(
6
),
745
756
(
2007
).
17.
M.
Banaszak
,
Y. C.
Chiew
, and
M.
Radosz
, “
Thermodynamic perturbation theory: Sticky chains and square-well chains
,”
Phys. Rev. E
48
(
5
),
3760
3765
(
1993
).
18.
H.
Adidharma
and
M.
Radosz
, “
Prototype of an engineering equation of state for heterosegmented
,”
Ind. Eng. Chem. Res.
37
(
11
),
4453
4462
(
1998
).
19.
A.
Gil-Villegas
,
A.
Galindo
,
P. J.
Whitehead
,
S. J.
Mills
,
G.
Jackson
, and
A. N.
Burgess
, “
Statistical associating fluid theory for chain molecules with attractive potentials of variable range
,”
J. Chem. Phys.
106
(
10
),
4168
(
1997
).
20.
F. W.
Tavares
,
J.
Chang
, and
S. I.
Sandler
, “
A completely analytic equation of state for the square-well chain fluid of variable well width
,”
Fluid Phase Equilib.
140
,
129
143
(
1997
).
21.
J. P.
Hansen
and
I. R.
McDonald
,
Theory of Simple Liquids
, 3rd ed. (
Academic Press
,
London, England
,
2005
).
22.
M. L. L.
Paredes
,
R. A.
dos Reis
, and
F. W.
Tavares
, “
Inner segment radial distribution functions at contact point for chain-like molecules
,”
J. Mol. Liq.
147
(
3
),
198
210
(
2009
).
23.
Y. C.
Chiew
, “
Percus-Yevick integral-equation theory for athermal hard-sphere chains. Part I. Equations of state
,”
Mol. Phys.
70
(
1
),
129
143
(
1990
).
24.
Y. C.
Chiew
, “
Percus-Yevick integral equation theory for athermal hard-sphere chains
,”
Mol. Phys.
73
(
2
),
359
373
(
1991
).
25.
A.
Yethiraj
,
C. K.
Hall
, and
K. G.
Honnell
, “
Site–site correlations in short chain fluids
,”
J. Chem. Phys.
93
(
6
),
4453
4461
(
1990
).
26.
K. G.
Honnell
and
C. K.
Hall
, “
A new equation of state for athermal chains
,”
J. Chem. Phys.
90
(
3
),
1841
1855
(
1989
).
27.
R.
Dickman
and
C. K.
Hall
, “
Equation of state for chain molecules: Continuous-space analog of Flory theory
,”
J. Chem. Phys.
85
(
7
),
4108
4115
(
1986
).
28.
F. W.
Tavares
,
J.
Chang
, and
S. I.
Sandler
, “
Equation of state for the square-well chain fluid based on the dimer version of Wertheim’s perturbation theory
,”
Mol. Phys.
86
(
6
),
1451
1471
(
1995
).
29.
J. G.
Kirkwood
,
E. K.
Maun
, and
B. J.
Alder
, “
Radial distribution functions and the equation of state of a fluid composed of rigid spherical molecules
,”
J. Chem. Phys.
18
(
8
),
1040
1047
(
1950
).
30.
K. U.
Co
,
J. J.
Kozak
, and
K. D.
Luks
, “
Solutions of the Yvon–Born–Green equation for the square-well fluid at very high densities
,”
J. Chem. Phys.
65
(
6
),
2327
2332
(
1976
).
31.
W. W.
Lincoln
,
J. J.
Kozak
, and
K. D.
Luks
, “
Properties of solutions to the Yvon–Born–Green equation for the square-well fluid
,”
J. Chem. Phys.
62
(
6
),
2171
2182
(
1975
).
32.
J. G.
Kirkwood
,
V. A.
Lewinson
, and
B. J.
Alder
, “
Radial distribution functions and the equation of state of fluids composed of molecules interacting according to the Lennard-Jones potential
,”
J. Chem. Phys.
20
(
6
),
929
938
(
1952
).
33.
A. A.
Broyle
, “
Radial distribution functions from the Born-Green integral equation
,”
J. Chem. Phys.
33
(
2
),
456
458
(
1960
).
34.
J. A.
Porter
,
S. V.
Fridrikh
, and
J. E. G.
Lipson
, “
Square-well chain fluids: The thermodynamic properties of hexamers, octamers, and hexadecamers
,”
J. Chem. Phys.
119
(
7
),
3883
3890
(
2003
).
35.
M. P.
Taylor
,
J.
Luettmer-Strathmann
, and
J. E. G.
Lipson
, “
Structure and phase behavior of square-well dimer fluids
,”
J. Chem. Phys.
114
(
13
),
5654
5662
(
2001
).
36.
S. V.
Fridrikh
and
J. E. G.
Lipson
, “
Square-well fluids: The statistical and thermodynamic properties of short chains
,”
J. Chem. Phys.
116
(
19
),
8483
8491
(
2002
).
37.
J.
Largo
,
J. R.
Solana
,
S. B.
Yuste
, and
A.
Santos
, “
Pair correlation function of short-ranged square-well fluids
,”
J. Chem. Phys.
122
(
8
),
084510-1
084510-12
(
2005
).
38.
D.
Henderson
,
W. G.
Madden
, and
D. D.
Fitts
, “
Monte Carlo and hypernetted chain equation of state for the square-well fluid
,”
J. Chem. Phys.
64
,
5026
(
1976
).
39.
K. D.
Scarfe
,
I. L.
McLaughlin
, and
A. F.
Collings
, “
The transport coefficients for a fluid of square-well rough spheres: Comparison with methane
,”
J. Chem. Phys.
65
,
2991
(
1976
).
40.
M. P.
Taylor
, “
Square-well diatomics exact low density results
,”
Mol. Phys.
64
,
1151
(
1994
).
41.
M. P.
Taylor
and
J. E. G.
Lipson
, “
A site–site Born–Green–Yvon equation for hard sphere dimers
,”
J. Chem. Phys.
100
,
518
(
1994
).
42.
M. L. L.
Paredes
,
R.
Nobrega
, and
F. W.
Tavares
, “
Square-well chain mixture: Analytic equation of state and Monte Carlo simulation data
,”
Fluid Phase Equilib.
179
,
245
267
(
2001
).
43.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Oxford University Press
,
1987
).
44.
P.
Paricaud
, “
Phase equilibria in polydisperse nonadditive hard-sphere systems
,”
Phys. Rev. E
78
(
2
),
021202
(
2008
).
45.
See supplementary material at http://dx.doi.org/10.1063/1.4944068 for all of the Monte Carlo simulation conditions and results obtained in this work.

Supplementary Material

You do not currently have access to this content.