Expressions for a K-adiabatic master equation for a bimolecular recombination rate constant krec are derived for a bimolecular reaction forming a complex with a single well or complexes with multiple well, where K is the component of the total angular momentum along the axis of least moment of inertia of the recombination product. The K-active master equation is also considered. The exact analytic solutions, i.e., the K-adiabatic and K-active steady-state population distribution function of reactive complexes, g(EJK) and g(EJ), respectively, are derived for the K-adiabatic and K-active master equation cases using properties of inhomogeneous integral equations (Fredholm type). The solutions accommodate arbitrary intermolecular energy transfer models, e.g., the single exponential, double exponential, Gaussian, step-ladder, and near-singularity models. At the high pressure limit, the krec for both the K-adiabatic and K-active master equations reduce, respectively, to the K-adiabatic and K-active bimolecular Rice–Ramsperger–Kassel–Marcus theory (high pressure limit expressions). Ozone and its formation from O + O2 are known to exhibit an adiabatic K. The ratio of the K-adiabatic to the K-active recombination rate constants for ozone formation at the high pressure limit is calculated to be ∼0.9 at 300 K. Results on the temperature and pressure dependence of the recombination rate constants and populations of O3 will be presented elsewhere.

1.
R. G.
Gilbert
and
S. C.
Smith
,
Theory of Unimolecular and Recombination Reactions
(
Blackwell Scientific
,
Oxford
,
1990
).
2.
K. A.
Holbrook
,
M. J.
Pilling
, and
S. H.
Robertson
,
Unimolecular Reactions
, 2nd ed. (
John Wiley & Sons
,
Chichester
,
1996
).
3.
T.
Baer
and
W. L.
Hase
,
Unimolecular Reaction Dynamics
(
Oxford University Press
,
New York
,
1996
).
4.
R.
Atkinson
and
J.
Arey
,
Chem. Rev.
103
,
4605
(
2003
).
5.
R. K.
Talukdar
,
M. E.
Davis
,
L.
Zhu
,
A. R.
Ravishankara
, and
J. B.
Burkholder
, 19th International Symposium on Gas Kinetics, Orleans, France, 2006.
6.
A.
Maranzana
,
J. R.
Barker
, and
G.
Tonachini
,
Phys. Chem. Chem. Phys.
9
,
4129
(
2007
).
7.
T. J.
Frankcombe
,
S. C.
Smith
,
K. E.
Gates
, and
S. H.
Robertson
,
Phys. Chem. Chem. Phys.
2
,
793
(
2000
).
8.
Y.
Georgievskii
,
J. A.
Miller
,
M. P.
Burke
, and
S. J.
Klippenstein
,
J. Phys. Chem. A
117
,
12146
(
2013
).
9.
M. A.
Hanning-Lee
,
N. J. B.
Green
,
M. J.
Pilling
, and
S. H.
Robertson
,
J. Phys. Chem.
97
,
860
(
1993
).
10.
J. A.
Miller
and
S. J.
Klippenstein
,
J. Phys. Chem. A
105
,
7254
(
2001
).
11.
12.
M. A.
Ali
and
J. R.
Barker
,
J. Phys. Chem. A
119
,
7578
(
2015
).
13.
J. R.
Barker
and
D. M.
Golden
,
Chem. Rev.
103
,
4577
(
2003
).
14.
D. M.
Golden
,
J. R.
Barker
, and
L. L.
Lohr
,
J. Phys. Chem. A
107
,
11057
(
2003
).
15.
N.
Ghaderi
and
R. A.
Marcus
,
J. Phys. Chem. A
118
,
10166
(
2014
).
16.
R. A.
Marcus
,
J. Chem. Phys.
20
,
359
(
1952
).
17.
R. A.
Marcus
,
J. Chem. Phys.
20
,
364
(
1952
).
18.
M. V.
Ivanov
,
S. Y.
Grebenshchikov
, and
R.
Schinke
,
J. Chem. Phys.
120
,
10015
(
2004
).
19.
M.
Kryvohuz
and
R. A.
Marcus
,
J. Chem. Phys.
132
,
224304
(
2010
).
20.
M.
Kryvohuz
and
R. A.
Marcus
,
J. Chem. Phys.
132
,
224305
(
2010
).
21.
L.
Zhu
,
W.
Chen
,
W. L.
Hase
, and
E. W.
Kaiser
,
J. Phys. Chem.
97
,
311
(
1993
).
22.
J. C.
Keck
and
G.
Carrier
,
J. Chem. Phys.
43
,
2284
(
1965
).
23.
S. C.
Smith
,
M. J.
McEwan
, and
R.
Gilbert
,
J. Chem. Phys.
90
,
4265
(
1989
).
24.
J. A.
Miller
and
S. J.
Klippenstein
,
J. Phys. Chem. A
108
,
8296
(
2004
).
26.
R. G.
Gilbert
and
M. J.
McEwan
,
Aust. J. Chem.
38
,
231
(
1985
).
27.
Z.
Zhu
and
R. A.
Marcus
,
J. Chem. Phys.
129
,
214106
(
2008
).
28.
J.
Troe
,
J. Chem. Phys.
66
,
4745
(
1977
).
29.
I.
Fredholm
,
Acta Math.
27
,
365
(
1903
).
30.
D.
Hilbert
,
Nachr. Ges. Wiss. Goettingen, Math.-Phys. Kl.
1904
,
49
.
31.
E.
Schmidt
,
Math. Ann.
63
,
433
(
1907
).
32.
R.
Courant
and
D.
Hilbert
,
Methods of Mathematical Physics
(
Interscience Publishers
,
New York
,
1989
), Vol.
1
.
33.

Both Fredholm and Hilbert start from the corresponding linear system fˆ=(IλKˆ)gˆ, where Kˆ is a square matrix, and fˆ, gˆ are vectors. Fredholm investigated when λ = − 1 is an eigenvalue of arbitrary multiplicity of the kernel using operation on functions. Unlike Fredholm, Hilbert first developed a theory for linear systems and eigensystems and then by a limiting process generalized the theory to the Fredholm equation. Schmidt worked directly with the integral equation and introduced what is now called the singular value decomposition for unsymmetric kernels.

34.
N. J.
Brown
and
J. A.
Miller
,
J. Chem. Phys.
80
,
5568
(
1984
).
35.
D. C.
Tardy
and
B. S.
Rabinovitch
,
Chem. Rev.
77
,
369
(
1977
).
36.
I.
Oref
and
D. C.
Tardy
,
Chem. Rev.
90
,
1407
(
1990
).
37.
D. W.
Setser
,
B. S.
Rabinovitch
, and
J. W.
Simons
,
J. Chem. Phys.
40
,
1751
(
1964
).
38.
B. S.
Rabinovitch
and
M. C.
Flowers
,
Q. Rev. Chem. Soc.
18
,
122
(
1964
).
39.
Y. Q.
Gao
and
R. A.
Marcus
,
J. Chem. Phys.
116
,
137
(
2002
).
40.
V.
Bernshtein
and
I.
Oref
,
J. Chem. Phys.
108
,
3543
(
1998
).
41.
I.
Koifman
,
E. I.
Dashevskaya
,
E. E.
Nikitin
, and
J.
Troe
,
J. Phys. Chem.
99
,
15348
(
1995
).
42.

Information on the intermolecular collisional energy transfer ΔE in bimolecular reactions may be obtained from classical trajectories to obtain the relevant parameters for the transfer probability function, P(E′, E) = N(E′, E)/Neff/δE, where N(E′, E) is the number of trajectories with energy transfer ΔE = E′ − E, δE is the energy interval whereupon N(E′, E) is evaluated, and Neff are the number of trajectories within a desired cross section, as noted and investigated in Refs. 40 and 41.

43.

A recurrence relation is an equation that expresses a function fn as some combination of fi with i < n. Once the initial condition(s) are specified, then each further term in the sequence or array is specified as a function of the preceding terms in a recursive manner. The term “difference equation” is also used. For further discussion, please see Refs. 44 and 45.

44.
P. M.
Batchelder
,
An Introduction to Linear Difference Equations
(
Dover Publications
,
1967
).
45.
W. H.
Press
,
S. A.
Teukolsky
,
W. T.
Vetterling
, and
B. P.
Flannery
,
Numerical Recipes: The Art of Scientific Computing
, 3rd ed. (
Cambridge University Press
,
New York
,
2007
).
46.
E.
Wigner
,
J. Chem. Phys.
5
,
720
(
1937
).
47.
S. C.
Smith
and
R. G.
Gilbert
,
Int. J. Chem. Kinet.
20
,
307
(
1983
).
48.
G. B.
Arfken
and
H. J.
Weber
,
Mathematical Methods for Physicists
, 4th ed. (
Academic Press
,
San Diego
,
1995
). The application of the Hilbert-Schmidt theorem yields a solution for the nonhomogeneous integral equation and informs on the conditions ofλ for the existence of solution.
49.

Upon noting the definition of λ from Eq. (19), then λEoZ(E,E)dE<1 when kd≠0 in λ, and so 1λEoZ(E,E)dE0. kd > 0 is a possibility for energies above the critical energy limit, E > E*(JK), whereby energy in excess of that locked in the K-motion is available for a bond dissociation, and where the energy condition, E = Erot + Eorb + Evib + Etrans + Eo is satisfied, e.g., for an A + BC → ABC process and Erot, Eorb, Evib, Etrans, and Eo are the rotational, orbital, vibrational, translational, and zero point energies, respectively, at the TS and elsewhere. For the center-to-center distance R, a reaction coordinate, as R → ∞, then Eorb → 0.

50.

In Eq. (27), f(EJK) > 0, λAˆ>0, and λ1Cˆ>0, where necessarily E > E*(JK) so to have kd(EJK) > 0 to avoid a singularity in Aˆ, and for kr(EJK) > 0 so to have both Aˆ>0 and f(EJK) > 0, where otherwise if kd = 0 then, undesirably, f(EJK)=0,Aˆ=0, and hence f(EJK)+λAˆ=0, so to yield a singularity in the left hand side of Eq. (27).

51.

In this case, kd = 0 and kr > 0. For a given (EJK), it may be assumed that both the associative and dissociative channels are open for energies greater than the critical energy E*(JK), unless subtle geometric and dynamical effects would render either one open and the other closed to association or recombination for the same (EJK).

52.
W.
Forst
,
Theory of Unimolecular Reactions
(
Academic Press
,
New York
,
1973
).
53.
E. W.
Montroll
and
K. E.
Shuler
,
Adv. Chem. Phys.
1
,
361
(
1958
).
54.
55.

For the evaluation of the integral in the second term of Eq. (32), for the energy region E′ ≤ E, the lower limit of integration is the least value of E such that E > E*(JK), so to validate the condition kd(EJK) > 0, and its upper limit is E. For region E′ > E, the lower limit of the integral is a selected E, where the lowest permissible selected value would be again that given earlier for region E′ ≤ E, and its upper limit is ∞, or can be set, for practical purposes, to such a value that would ensure the convergence of the integral.

56.
W. H.
Miller
,
J. Chem. Phys.
65
,
2216
(
1976
).
57.
J. O.
Hirschfelder
and
E.
Wigner
,
J. Chem. Phys.
7
,
616
(
1939
).
58.
W. J.
Chesnavich
,
L.
Bass
,
T.
Su
, and
M. T.
Bowers
,
J. Chem. Phys.
74
,
2228
(
1981
).
59.
S. J.
Klippenstein
and
R. A.
Marcus
,
J. Chem. Phys.
91
,
2280
(
1989
).
60.

For a physical situation obeying the condition A(t)∘BC(t) ≫ g(EJK, t), whereby relatively the greater concentration of reactants A(t)∘BC(t) appears as a constant compared to a concentration of product molecules, then dA(t)∘BC(t)/dt ≅ 0 and thence for simplicity of a numerical calculation assumes A(t)∘BC(t) be independent of time in Eq. (35), and likewise via a similar argument for the K-active case, Eq. (36).

62.

The analysis is as follows in obtaining the test cases: we compare the ratio of g(EJ)+, Eq. (33) to g(EJK)+, Eq. (29). In the analysis, for simplicity, the primes were dropped in kr(EJK′), upon making an assumption offered following Eq. (32); however these simpler test cases (a) and (b) in the text give the same result as the ratio of g(EJ)+, Eq. (33), to g(EJK)+ when retaining all terms in the calculation. As ZLJ → 0, then limZLJ0g(EJ)+=kr(EJ)/kd(EJ), where the second term in g(EJ)+ is zero. Similarly for the K-adiabatic case limZLJ0g(EJK)+=kr(EJK)/kd(EJK). And so, limZLJ0[g(EJ)+/g(EJK)+]=[kr(EJ)/kd(EJ)]/[kr(EJK)/kd(EJK)]. Upon inquiring if the latter ratio is ≥1 then yields the test cases (a) and (b). The case for <1 was discussed in the text. As ZLJ → ∞, the same ratio is also obtained, where now the first term is zero for either g(EJ)+ or g(EJK)+, and upon using L’Hopital’s rule (Ref. 80) on the second terms of g(EJ)+ and g(EJK)+. For the intermediate values of ZLJ, again the same ratio [kr(EJ)/kd(EJ)]/[kr(EJK)/kd(EJK)] emerges as a viable test case, for physically realizable values of kr, kd, and ZLJ, and the ratio may be used as a test case to obtain results on the ratio of populations for cases (a) and (b) in the text.

63.
B. C.
Hathorn
and
R. A.
Marcus
,
J. Chem. Phys.
113
,
9497
(
2000
).
64.
D. M.
Wardlaw
and
R. A.
Marcus
,
Chem. Phys. Lett.
110
,
230
(
1984
).
65.
A. J. C.
Varandas
and
J. N.
Murrell
,
Chem. Phys. Lett.
88
,
1
(
1982
). The reader may consult the supplementary material of Ref. 15 for a discussion on the treatment of the potential energy surface.
66.
K.
Luther
,
K.
Oum
, and
J.
Troe
,
Phys. Chem. Chem. Phys.
7
,
2764
(
2005
).
67.
M. V.
Ivanov
and
R.
Schinke
,
J. Chem. Phys.
124
,
104303
(
2006
).
68.
E. E.
Nikitin
,
Theory of Elementary Atomic and Molecular Processes in Gases
(
Clarendon
,
Oxford
,
1974
).
69.
S. A.
Clough
and
F. X.
Kneizys
,
J. Chem. Phys.
44
,
1855
(
1966
).
70.

In the low pressure limit, the first and the second terms in the master equations, Eqs. (13) and (14), are each zero, since ZLJ → 0 appears there, in which it leaves the third term in the master equations which is either kd(EJK) g(EJK)+ or kd(EJ) g(EJ)+ in Eqs. (13) and (14), respectively. In turn, the krec(EJK) ABC = kd(EJK) g(EJK)+ reduces to kr(EJK) ABC, where the latter arises from the first term of g(EJK)+, when the kd(EJK) in the numerator canceled the kd(EJK) in the denominator with ZLJ = 0, while the second term in g(EJK)+ is zero, since a ZLJ appears in the Z(E, E′) there. Averaging over K in the above analysis then yields, similar, results for the K-active case.

71.

For example, in Ref. 27, the analytic solution (population) from Wiener-Hopf technique was inserted in ∫∫g(E) Z(E′, E) dEdE to obtain the low pressure recombination rate constant. The J and K degree of freedoms may be introduced in the latter formula.

72.

In the case for comparing krec to that from classical trajectories, the N* and ρ would be determined classically, e.g., discussed for the K-active and K-adiabatic cases in Ref. 73.

73.
N.
Ghaderi
and
R. A.
Marcus
,
J. Phys. Chem. B
115
,
5625
(
2011
).
74.
T.
Beyer
and
D. F.
Swinehart
,
Commun. ACM
16
,
379
(
1973
).
75.
J. R.
Barker
,
Int. J. Chem. Kinet.
41
,
748
(
2009
).
76.

The average downward energy is defined as ΔEEd=0E(EE)Z(E,E)dE/0EZ(E,E)dE for E′ < E. May see Ref. 36.

77.
J. E.
Marsden
and
M. J.
Hoffman
,
Basic Complex Analysis
, 3rd ed. (
W.H. Freeman and Company
,
New York
,
1999
).
78.
R. V.
Churchill
,
Complex Variables and Applications
, 2nd ed. (
McGraw-Hill
,
New York
,
1960
).
79.
S. G.
Mikhlin
,
Integral Equations and Their Application to Certain Problems in Mechanics, Mathematical Physics and Technology
, 2nd ed. (
Pergamon Press
,
New York
,
1964
).
80.
S. K.
Stein
,
Calculus and Analytic Geometry
, 4th ed. (
McGraw-Hill
,
New York
,
1987
).
81.

The L’Hopital’s rule (infinity-over-infinity case)80 states that if f and g are defined and differentiable for all x larger than some fixed number, then, if limxf(x)=,limxg(x)=, and limxf(x)g(x)=L, then it follows that limxf(x)g(x)=L. For further discussion, please see Ref. 80. The application of the rule to Eq. (G1) gives limZLJg(EJK)+=ddZLJ[JKEoZ(E,E)g(EJK)dE]/ddZLJ[EoZ(E,E)dE+kd(EJK)], where the numerator in the latter equation yields Eq. (G2), and the denominator is equal to 1.

You do not currently have access to this content.