A theoretical method based on dynamic version of self-consistent field theory is extended to investigate directed self-assembly behaviors of block copolymers subjected to zone annealing. The ordering mechanisms and orientation modulation of microphase-separated nanostructures of block copolymers are discussed in terms of sweep velocity, wall preference, and Flory-Huggins interaction parameter. The simulated results demonstrate that the long-range ordered nanopatterns are achieved by lowering the sweep velocity of zone annealing due to the incorporation of templated ordering of block copolymers. The surface enrichment by one of the two polymer species induces the orientation modulation of defect-free nanostructures through finely tuning the composition of block copolymers and the preference of walls. Additionally, the Flory-Huggins interaction parameters of block copolymers in the distinct regions are main factors to design the zone annealing process for creating the highly ordered nanostructures with single orientation.

1.
J.
Chai
and
J. M.
Buriak
,
ACS Nano
2
,
489
(
2008
).
2.
D.
Zschech
,
D. H.
Kim
,
A. P.
Milenin
,
R.
Scholz
,
R.
Hillebrand
,
C. J.
Hawker
,
T. P.
Russell
,
M.
Steinhart
, and
U.
Gösele
,
Nano Lett.
7
,
1516
(
2007
).
3.
K.
Naito
,
H.
Hieda
,
M.
Sakurai
,
Y.
Kamata
, and
K.
Asakawa
,
IEEE Trans. Magn.
38
,
1949
(
2002
).
4.
K.
Banerjee
,
S. J.
Souri
,
P.
Kapur
, and
K. C.
Saraswat
,
Proc. IEEE
89
,
602
(
2001
).
5.
H.-C.
Kim
,
S.-M.
Park
, and
W. D.
Hinsberg
,
Chem. Rev.
110
,
146
(
2010
).
6.
M. P.
Stoykovich
,
M.
Müller
,
S. O.
Kim
,
H. H.
Solak
,
E. W.
Edwards
,
J. J.
de Pablo
, and
P. F.
Nealey
,
Science
308
,
1442
(
2005
).
7.
R.
Ruiz
,
H.
Kang
,
F. A.
Detcheverry
,
E.
Dobisz
,
D. S.
Kercher
,
T. R.
Albrecht
,
J. J.
de Pablo
, and
P. F.
Nealey
,
Science
321
,
936
(
2008
).
8.
R. A.
Segalman
,
A.
Hexemer
, and
E. J.
Kramer
,
Macromolecules
36
,
6831
(
2003
).
9.
D.
Sundrani
,
S. B.
Darling
, and
S. J.
Sibener
,
Nano Lett.
4
,
273
(
2004
).
10.
J.
Chai
,
D.
Wang
,
X.
Fan
, and
J. M.
Buriak
,
Nat. Nanotechnol.
2
,
500
(
2007
).
11.
M. R.
Hammond
,
E.
Cochran
,
G. H.
Fredrickson
, and
E. J.
Kramer
,
Macromolecules
38
,
6575
(
2005
).
12.
R.
Ruiz
,
N.
Ruiz
,
Y.
Zhang
,
R. L.
Sandstrom
, and
C. T.
Black
,
Adv. Mater.
19
,
2157
(
2007
).
13.
I.
Bita
,
J. K. W.
Yang
,
Y. S.
Jung
,
C. A.
Ross
,
E. L.
Thomas
, and
K. K.
Berggren
,
Science
321
,
939
(
2008
).
14.
X.
He
,
Z.
Zou
,
D.
Kan
, and
H.
Liang
,
J. Chem. Phys.
142
,
101912
(
2015
).
15.
Z.-R.
Chen
,
J. A.
Kornfield
,
S. D.
Smith
,
J. T.
Grothaus
, and
M. M.
Satkowski
,
Science
277
,
1248
(
1997
).
16.
Z.
Qiang
,
L.
Zhang
,
G. E.
Stein
,
K. A.
Cavicchi
, and
B. D.
Vogt
,
Macromolecules
47
,
1109
(
2014
).
17.
S. Y.
Kim
,
A.
Nunns
,
J.
Gwyther
,
R. L.
Davis
,
I.
Manners
,
P. M.
Chaikin
, and
R. A.
Register
,
Nano Lett.
14
,
5698
(
2014
).
18.
K.
Amundson
,
E.
Helfand
,
D. D.
Davis
,
X.
Quan
,
S. S.
Patel
, and
S. D.
Smith
,
Macromolecules
24
,
6546
(
1991
).
19.
C.
Liedel
,
C. W.
Pester
,
M.
Ruppel
,
V. S.
Urban
, and
A.
Böker
,
Macromol. Chem. Phys.
213
,
259
(
2012
).
20.
T.
Hashimoto
,
J.
Bodycomb
,
Y.
Funaki
, and
K.
Kimishima
,
Macromolecules
32
,
952
(
1999
).
21.
J.
Bodycomb
,
Y.
Funaki
,
K.
Kimishima
, and
T.
Hashimoto
,
Macromolecules
32
,
2075
(
1999
).
22.
K.
Mita
,
H.
Tanaka
,
K.
Saijo
,
M.
Takenaka
, and
T.
Hashimoto
,
Macromolecules
40
,
5923
(
2007
).
23.
K.
Mita
,
H.
Tanaka
,
K.
Saijo
,
M.
Takenaka
, and
T.
Hashimoto
,
Macromolecules
41
,
6780
(
2008
).
24.
K.
Mita
,
H.
Tanaka
,
K.
Saijo
,
M.
Takenaka
, and
T.
Hashimoto
,
Macromolecules
41
,
6787
(
2008
).
25.
K.
Mita
,
M.
Takenaka
,
H.
Hasegawa
, and
T.
Hashimoto
,
Macromolecules
41
,
8789
(
2008
).
26.
D. E.
Angelescu
,
J. H.
Waller
,
D. H.
Adamson
,
R. A.
Register
, and
P. M.
Chaikin
,
Adv. Mater.
19
,
2687
(
2007
).
27.
B. C.
Berry
,
A. W.
Bosse
,
J. F.
Douglas
,
R. L.
Jones
, and
A.
Karim
,
Nano Lett.
7
,
2789
(
2007
).
28.
G.
Singh
,
K. G.
Yager
,
B.
Berry
,
H.-C.
Kim
, and
A.
Karim
,
ACS Nano
6
,
10335
(
2012
).
29.
G.
Singh
,
K. G.
Yager
,
D. M.
Smilgies
,
M. M.
Kulkarni
,
D. G.
Bucknall
, and
A. T.
Karim
,
Macromolecules
45
,
7107
(
2012
).
30.
W. G.
Pfann
,
Zone Melting
, 2nd ed. (
John Wiley & Sons
,
1966
).
31.
K. G.
Yager
,
N. J.
Fredin
,
X.
Zhang
,
B. C.
Berry
,
A.
Karim
, and
R. L.
Jones
,
Soft Matter
6
,
92
(
2010
).
32.
B. C.
Berry
,
G.
Singh
,
H.-C.
Kim
, and
A.
Karim
,
ACS Macro Lett.
2
,
346
(
2013
).
33.
G.
Singh
,
S.
Batra
,
R.
Zhang
,
H.
Yuan
,
K. G.
Yager
,
M.
Cakmak
,
B.
Berry
, and
A.
Karim
,
ACS Nano
7
,
5291
(
2013
).
34.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation: From Algorithms to Applications
, 2nd ed. (
Academic Press
,
2007
).
35.
H.
Furukawa
,
Physica A
180
,
128
(
1992
).
36.
H.
Zhang
,
J.
Zhang
,
Y.
Yang
, and
X.
Zhou
,
J. Chem. Phys.
106
,
784
(
1997
).
37.
B.
Liu
,
H. D.
Zhang
, and
Y. L.
Yang
,
J. Chem. Phys.
113
,
719
(
2000
).
38.
A. W.
Bosse
,
J. F.
Douglas
,
B. C.
Berry
,
R. L.
Jones
, and
A.
Karim
,
Phys. Rev. Lett.
99
,
216101
(
2007
).
39.
J. G. E. M.
Fraaije
,
B. A. C.
van Vlimmeren
,
N. M.
Maurits
,
M.
Postma
,
O. A.
Evers
,
C.
Hoffmann
,
P.
Altevogt
, and
G.
Goldbeck-Wood
,
J. Chem. Phys.
106
,
4260
(
1997
).
40.
C.
Yeung
and
A.-C.
Shi
,
Macromolecules
32
,
3637
(
1999
).
41.
E.
Reister
,
M.
Müller
, and
K.
Binder
,
Phys. Rev. E
64
,
041804
(
2001
).
42.
H.
Morita
,
T.
Kawakatsu
,
M.
Doi
,
D.
Yamaguchi
,
M.
Takenaka
, and
T.
Hashimoto
,
Macromolecules
35
,
7473
(
2002
).
43.
N.
Xie
,
W.
Li
,
H.
Zhang
,
F.
Qiu
, and
A.-C.
Shi
,
J. Chem. Phys.
139
,
194903
(
2013
).
44.
Y.
Xu
,
N.
Xie
,
W.
Li
,
F.
Qiu
, and
A.-C.
Shi
,
J. Chem. Phys.
137
,
194905
(
2012
).
45.
L.
Zhang
,
A.
Sevink
, and
F.
Schmid
,
Macromolecules
44
,
9434
(
2011
).
46.
X.
Cao
,
L.
Zhang
,
L.
Wang
, and
J.
Lin
,
Soft Matter
10
,
5916
(
2014
).
47.
G. H.
Fredrickson
,
The Equilibrium Theory of Inhomogeneous Polymers
(
Oxford University Press
,
2006
).
48.
M.
Müller
and
F.
Schmid
,
Adv. Polym. Sci.
185
,
1
(
2005
).
49.
G.
Tzeremes
,
K. Ø.
Rasmussen
,
T.
Lookman
, and
A.
Saxena
,
Phys. Rev. E
65
,
041806
(
2002
).
50.
T. L.
Chantawansri
,
S.-M.
Hur
,
C. J.
Garcia-Cervera
,
H. D.
Ceniceros
, and
G. H.
Fredrickson
,
J. Chem. Phys.
134
,
244905
(
2011
).
51.
B. A. C.
van Vlimmeren
and
J. G. E. M.
Fraaije
,
Comput. Phys. Commun.
99
,
21
(
1996
).
52.
W. H.
Press
,
S.
Teukolsky
,
W.
Vetterling
, and
B. P.
Flannery
,
Numerical Recipes in Fortran: The Art of Scientific Computing
(
Cornell University Press
,
1992
).
53.
M. W.
Matsen
,
J. Chem. Phys.
106
,
7781
(
1997
).
54.
See supplementary material at http://dx.doi.org/10.1063/1.4943864 for the morphological evolution of block copolymers as well as the effects of zone widths.
55.
O.
Kuksenok
,
R. D. M.
Travasso
, and
A. C.
Balazs
,
Phys. Rev. E
74
,
011502
(
2006
).
56.
N.
Provatas
and
K.
Elder
,
Phase-Field Methods in Materials Science and Engineering
(
Wiley-VCH
,
2010
).
57.
J.
Berry
and
M.
Grant
,
Phys. Rev. E
89
,
062303
(
2014
).
58.
L.
Zhang
,
L.
Wang
, and
J.
Lin
,
ACS Macro Lett.
3
,
712
(
2014
).

Supplementary Material

You do not currently have access to this content.