The dielectric properties of a fluid composed of molecules possessing both dipole and quadrupole moments are studied based on a model of the Onsager type (molecule in the centre of a spherical cavity). The dielectric permittivity ε and the macroscopic quadrupole polarizability αQ of the fluid are related to the basic molecular characteristics (molecular dipole, polarizability, quadrupole, quadrupolarizability). The effect of αQ is to increase the reaction field, to bring forth reaction field gradient, to decrease the cavity field, and to bring forth cavity field gradient. The effects from the quadrupole terms are significant in the case of small cavity size in a non-polar liquid. The quadrupoles in the medium are shown to have a small but measurable effect on the dielectric permittivity of several liquids (Ar, Kr, Xe, CH4, N2, CO2, CS2, C6H6, H2O, CH3OH). The theory is used to calculate the macroscopic quadrupolarizabilities of these fluids as functions of pressure and temperature. The cavity radii are also determined for these liquids, and it is shown that they are functions of density only. This extension of Onsager’s theory will be important for non-polar solutions (fuel, crude oil, liquid CO2), especially at increased pressures.

1.
J. D.
Jackson
,
Classical Electrodynamics
, 1st ed. (
John Wiley & Sons, Inc.
,
New York
,
1962
);
J. D.
Jackson
,
Classical Electrodynamics
, 3rd ed. (
John Wiley & Sons, Inc.
,
New York
,
1999
).
2.
R. E.
Raab
and
O.L.de.
Lange
,
Multipole Theory in Electromagnetism
(
Clarendon
,
Oxford
,
2005
).
3.
J. E.
Mayer
and
M. G.
Mayer
,
Phys. Rev.
43
,
605
(
1933
).
4.
R. A.
Satten
,
J. Chem. Phys.
26
,
766
(
1957
).
5.
R. M.
Sternheimer
,
Phys. Rev.
96
,
951
(
1954
).
6.
S. M.
Chitanvis
,
J. Chem. Phys.
104
,
9065
(
1996
).
7.
J.
Jeon
and
H. J.
Kim
,
J. Chem. Phys.
119
,
8606
(
2003
).
8.
J.
Jeon
and
H. J.
Kim
,
J. Chem. Phys.
119
,
8626
(
2003
).
9.
R. I.
Slavchov
and
T. I.
Ivanov
,
J. Chem. Phys.
140
,
074503
(
2014
).
10.
R. I.
Slavchov
,
J. Chem. Phys.
140
,
164510
(
2014
).
11.
R. I.
Slavchov
,
I. M.
Dimitrova
, and
T. I.
Ivanov
,
J. Chem. Phys.
143
,
154707
(
2015
).
12.
R. M.
Ernst
,
L.
Wu
,
C.-H.
Lui
,
S. R.
Nagel
, and
M. E.
Neubert
,
Phys. Rev. B
45
,
667
(
1992
).
13.
A. D.
Buckingham
,
Adv. Chem. Phys.
12
,
107
(
1967
).
14.
L.
Onsager
,
J. Am. Chem. Soc.
58
,
1486
(
1936
).
15.
C. J. F.
Böttcher
,
Theory of Electric Polarization
(
Elsevier
,
Amsterdam
,
1952
).
16.
R. J.
Abraham
and
M. A.
Cooper
,
J. Chem. Soc. B
1967
,
202
.
17.
J.
Tomasi
,
B.
Mennucci
, and
R.
Cammi
,
Chem. Rev.
105
,
2999
(
2005
).
18.
C.
Reichardt
and
T.
Welton
,
Solvents and Solvent Effects in Organic Chemistry
(
Wiley-VCH
,
Weinheim
,
2011
).
19.
N. S.
Bayliss
and
E. G.
McRae
,
J. Phys. Chem.
58
,
1002
(
1954
).
20.
W. L.
Jorgensen
,
J. Phys. Chem.
87
,
5304
(
1983
).
21.
L.
Došen-Mićović
and
V.
žigman
,
J. Chem. Soc., Perkin Trans. 2
1985
,
625
.
22.
M. J.
Kamlet
,
J. L. M.
Abboud
, and
R. W.
Taft
, in
Progress in Physical Organic Chemistry
, edited by
R. W.
Taft
(
Wiley
,
1981
), Vol.
13
.
23.
K. L.
Laidler
and
H.
Eyring
,
Ann. N. Y. Acad. Sci.
39
,
303
(
1939
).
24.
K. J.
Laidler
, in
Chemical Kinetics
(
McGraw-Hill
,
NY
,
1950
), Chap. V.
25.
R. A.
Marcus
,
J. Chem. Phys.
24
,
966
(
1956
).
26.
J. B.
Foresman
,
T. A.
Keith
,
K. B.
Wiberg
,
J.
Snoonian
, and
M. J.
Frisch
,
J. Phys. Chem.
100
,
16098
(
1996
).
27.
K. V.
Mikkelsen
,
H.
Ågren
,
H. J. A.
Jensen
, and
T.
Helgaker
,
J. Chem. Phys.
89
,
3086
(
1988
).
28.
D. V.
Matyushov
and
G. A.
Voth
,
J. Chem. Phys.
111
,
3630
(
1999
).
29.
A. A.
Milischuk
and
D. V.
Matyushov
,
J. Chem. Phys.
124
,
204502
(
2006
).
30.
A. A.
Milischuk
and
D. V.
Matyushov
,
J. Chem. Phys.
123
,
044501
(
2005
).
31.
32.
G. N.
Patey
,
D.
Levesque
, and
J. J.
Weis
,
Mol. Phys.
38
,
1635
(
1979
).
33.
F. O.
Raineri
and
H. L.
Friedman
,
Adv. Chem. Phys.
107
,
81
(
1999
).
34.
W. B.
Streett
and
D. J.
Tildesley
,
Proc. R. Soc. A
355
,
239
(
1977
).
35.
D.
Levesque
,
J. J.
Weis
, and
G. N.
Patey
,
Mol. Phys.
51
,
333
(
1984
).
36.
B.
Sellner
and
S. M.
Kathmann
,
J. Chem. Phys.
141
,
18C534
(
2014
).
37.
V. V.
Batygin
and
I. N.
Toptygin
,
Sbornik Zadach po Elektrodinamike i Spetzialnoy Teorii Otnositelnosti
, 4th ed. (
Lan
,
2010
), p.
283
(in Russian).
38.
R. I.
Slavchov
and
I. M.
Dimitrova
,
Bulg. J. Chem.
3
,
51
(
2014
).
40.
A. D.
Buckingham
,
J. Chem. Phys.
30
,
1580
(
1959
).
41.
H.
Fröhlich
,
Theory of Dielectrics
(
Clarendon
,
Oxford
,
1958
).
42.
J.
Kongsted
,
A.
Osted
,
K. V.
Mikkelsen
, and
O.
Christiansen
,
Chem. Phys. Lett.
364
,
379
(
2002
).
43.
J. G.
Kirkwood
,
J. Chem. Phys.
7
,
911
(
1939
).
44.

The use of Eq. (54) for the determination of Rcav has the feature that it yields the Clausius-Mossotti and Lorentz-Lorenz equations as limits of main Eq. (50). Even without this assumption, at infinite dilution, the three equations have the same series of ε(C) at C → 0 up to O(C3).

45.
A.
Passinsky
,
Acta Physicochim. URSS
8
,
385
(
1938
).
46.
J.
Padova
,
J. Chem. Phys.
40
,
691
(
1964
).
47.
C.-G.
Zhan
and
D. M.
Chipman
,
J. Chem. Phys.
109
,
10543
(
1998
).
48.
Y.
Luo
,
H.
Ågren
, and
K. V.
Mikkelsen
,
Chem. Phys. Lett.
275
,
145
(
1997
).
49.
Y.
Luo
,
P.
Norman
,
H.
Ågren
,
K. O.
Sylvester-Hvid
, and
K. V.
Mikkelsen
,
Phys. Rev. E
57
,
4778
(
1998
).
50.
B.
Linder
and
D.
Hoernschemeyer
,
J. Chem. Phys.
46
,
784
(
1967
).
51.
C. J. F.
Böttcher
,
Physica (Amsterdam)
9
,
945
(
1942
).
52.
P.
Debye
,
Phys. Z.
13
,
97
(
1912
).
53.
A.
Michels
,
C. A.
Ten Seldam
, and
S. D. J.
Overdijk
,
Physica
17
,
781
(
1951
).
54.
M.
Lallemand
and
D.
Vidal
,
J. Chem. Phys.
66
,
4776
(
1977
).
55.
R. L.
Amey
and
R. H.
Cole
,
J. Chem. Phys.
40
,
146
(
1964
).
56.
G.
Maroulis
and
D. M.
Bishop
,
J. Phys. B: At. Mol. Phys.
18
,
4675
(
1985
).
57.
N. E.
Hill
,
W. E.
Vaughan
,
A. H.
Price
, and
M.
Davies
,
Dielectric Properties and Molecular Behaviour
(
Van Nostrand Reinhold
,
London
,
1969
).
58.

Eq. (57) can be used to fit directly the data for Rcav vs. ρ in Fig. 3(a). This procedure is easy to code but it gives significant weight to the dispersed data points at small densities and thus introduces serious inaccuracies in the final results for k0 and kρ, and leads to increased devε.

59.
G.
Maroulis
and
A. J.
Thakkar
,
J. Chem. Phys.
89
,
7320
(
1988
).
60.
G.
Maroulis
,
Chem. Phys. Lett.
226
,
420
(
1994
).
61.
CRC Handbook of Chemistry and Physics
, edited by
W. M.
Haynes
(
CRC
,
New York
,
2011
).
62.
G. C.
Straty
and
R. D.
Goodwin
,
Cryogenics
13
,
712
(
1973
).
63.
J. F.
Ely
and
G. C.
Straty
,
J. Chem. Phys.
61
,
1480
(
1974
).
64.
G.
Maroulis
and
A. J.
Thakkar
,
J. Chem. Phys.
88
,
7623
(
1988
).
66.
T.
Moriyoshi
,
T.
Kita
, and
Y.
Uosaki
,
Ber. Bunsenges. Phys. Chem.
97
,
589
(
1993
).
67.
A.
Michels
and
L.
Kleerekoper
,
Physica
6
,
586
(
1939
).
68.
F. G.
Keyes
and
J. G.
Kirkwood
,
Phys. Rev.
36
,
754
(
1930
).
69.
F. I.
Mopsik
,
J. Chem. Phys.
50
,
2559
(
1969
).
70.
G.
Maroulis
,
Chem. Phys. Lett.
199
,
250
(
1992
).
71.
N.
Gee
,
K.
Shinsaka
,
J.-P.
Dodelet
, and
G. R.
Freeman
,
J. Chem. Thermodyn.
18
,
221
(
1986
).
72.
H.
Hartmann
,
A.
Neumann
, and
G.
Rinck
,
Z. Phys. Chem.
44
,
204
(
1965
).
73.
J. K.
Vij
and
W. G. S.
Scaife
,
J. Chem. Phys.
64
,
2226
(
1976
).
74.
G. I.
Skanavi
,
Physics of Dielectrics (Weak Field Region)
(
GITTL
,
Moscow
,
1949
) (in Russian).
75.
J. N.
Israelachvili
,
Intermolecular and Surface Forces
, 3rd ed. (
Academic Press
,
Burlington, MA
,
2011
).
76.
D. P.
Fernández
,
Y.
Mulev
,
A. R. H.
Goodwin
, and
J. M. H.
Levelt Sengers
,
J. Phys. Chem. Ref. Data
24
,
33
(
1995
).
77.
G. S.
Kell
,
J. Chem. Eng. Data
20
,
97
(
1975
).
78.
T.
Grindley
and
J. E.
Lind
,
Jr., J. Chem. Phys.
54
,
3983
(
1971
).
79.
E. R.
Batista
,
S. S.
Xantheas
, and
H.
Jónsson
,
J. Chem. Phys.
109
,
4546
(
1998
).
80.
D. M.
Bishop
and
J.
Pipin
,
Theor. Chim. Acta
71
,
247
(
1987
).
82.
P. L.
Silvestrelli
and
M.
Parrinello
,
Phys. Rev. Lett.
82
,
3308
(
1999
).
83.
G.
Åkerlöf
,
J. Am. Chem. Soc.
54
,
4125
(
1932
).
84.
V. A.
Rana
,
H.
Chaube
, and
D. H.
Gadani
,
J. Mol. Liq.
164
,
191
(
2011
).
85.
R. D.
Bezman
,
E. F.
Casassa
, and
R. L.
Kay
,
J. Mol. Liq.
73-74
,
397
(
1997
).
86.
E.
Schadow
and
R.
Steiner
,
Z. Phys. Chem.
66
,
105
(
1969
).
87.
T.
Sun
,
S. N.
Biswas
,
N. J.
Trappeniers
, and
C. A.
Ten Seldam
,
J. Chem. Eng. Data
33
,
395
(
1988
).
88.
F.
Booth
,
J. Chem. Phys.
19
,
391
(
1951
).
89.
B.
Cichocki
and
B. U.
Felderhof
,
J. Chem. Phys.
92
,
6104
(
1990
).
90.
R.
Caprotti
,
A.
Breakspear
,
O.
Graupner
,
T.
Klaua
, and
O.
Kohnen
, SAE 2006-01-3359, 2006.
91.
A.
Tanaka
,
K.
Yamada
,
T.
Omori
,
S.
Bunne
, and
K.
Howokawa
, SAE 2013-01-2661, 2013.
92.
J. G.
Speight
,
The Chemistry and Technology of Petroleum
, 5th ed. (
CRC Press
,
2014
).
93.
See supplementary material at http://dx.doi.org/10.1063/1.4943196 for the following. Section A: Solving the quadrupolar Coulomb-Ampère law. Section B: Average quadrupole moment per molecule and derivation of the equation forαQ. Section C: Average molecular quadrupolarizability vs. components of the molecular quadrupole polarizability tensor. Section D: Sample Maple code for solving Eqs.(50) and (53) for LQ and Rcav.

Supplementary Material

You do not currently have access to this content.