The simulation of X-ray emission spectra of transition metal complexes with time-dependent density functional theory (TDDFT) is investigated. X-ray emission spectra can be computed within TDDFT in conjunction with the Tamm-Dancoff approximation by using a reference determinant with a vacancy in the relevant core orbital, and these calculations can be performed using the frozen orbital approximation or with the relaxation of the orbitals of the intermediate core-ionised state included. Both standard exchange-correlation functionals and functionals specifically designed for X-ray emission spectroscopy are studied, and it is shown that the computed spectral band profiles are sensitive to the exchange-correlation functional used. The computed intensities of the spectral bands can be rationalised by considering the metal p orbital character of the valence molecular orbitals. To compute X-ray emission spectra with the correct energy scale allowing a direct comparison with experiment requires the relaxation of the core-ionised state to be included and the use of specifically designed functionals with increased amounts of Hartree-Fock exchange in conjunction with high quality basis sets. A range-corrected functional with increased Hartree-Fock exchange in the short range provides transition energies close to experiment and spectral band profiles that have a similar accuracy to those from standard functionals.

1.
J.
van Bokhoven
,
Phys. Chem. Chem. Phys.
12
,
5502
(
2010
).
2.
B. D.
Patterson
and
R.
Abela
,
Phys. Chem. Chem. Phys.
12
,
5647
-
5652
(
2010
).
3.
G.
Smolentsev
,
A. V.
Soldatov
,
J.
Messinger
,
K.
Merz
,
T.
Weyhermüller
,
U.
Bergmann
,
Y.
Pushkar
,
J.
Yano
,
V. K.
Yachandra
, and
P.
Glatzel
,
J. Am. Chem. Soc.
131
,
13161
-
13167
(
2009
).
4.
N.
Lee
,
T.
Petrenko
,
U.
Bergmann
,
F.
Neese
, and
S.
DeBeer
,
J. Am. Chem. Soc.
132
,
9715
-
9727
(
2010
).
5.
J. C.
Swarbrick
,
Y.
Kvashnin
,
K.
Schulte
,
K.
Seenivasan
,
C.
Lamberti
, and
P.
Glatzel
,
Inorg. Chem.
49
,
8323
-
8332
(
2010
).
6.
M. A.
Beckwith
,
M.
Roemelt
,
M.-N.
Collomb
,
C.
DuBoc
,
T.-C.
Weng
,
U.
Bergmann
,
P.
Glatzel
,
F.
Neese
, and
S.
DeBeer
,
Inorg. Chem.
50
,
8397
-
8409
(
2011
).
7.
C. J.
Pollock
and
S.
DeBeer
,
J. Am. Chem. Soc.
133
,
5594
-
5601
(
2011
).
8.
A. J.
Atkins
,
M.
Bauer
, and
C. R.
Jacob
,
Phys. Chem. Chem. Phys.
15
,
8095
-
8105
(
2013
).
9.
M. U.
Delgado-Jaime
,
S.
DeBeer
, and
M.
Bauer
,
Chem. Eur. J.
19
,
15888
-
15897
(
2013
).
10.
E. R.
Hall
,
C. J.
Pollock
,
J.
Bendix
,
T. J.
Collins
,
P.
Glatzel
, and
S.
DeBeer
,
J. Am. Chem. Soc.
136
,
10076
-
10084
(
2014
).
11.
S. N.
MacMillan
,
R. C.
Walroth
,
D. M.
Perry
,
T. J.
Morsing
, and
K. M.
Lancaster
,
Inorg. Chem.
54
,
205
-
214
(
2015
).
12.
K. M.
Lancaster
,
M.
Roemelt
,
P.
Ettenhuber
,
Y.
Hu
,
M. W.
Ribbe
,
F.
Neese
,
U.
Bergmann
, and
S.
DeBeer
,
Science
334
,
974
-
977
(
2011
).
13.
F.
de Groot
,
Coord. Chem. Rev.
249
,
31
-
63
(
2005
).
14.
H.
Ågren
and
J.
Nordgren
,
Theor. Chim. Acta
58
,
111
-
119
(
1981
).
15.
H.
Ågren
,
R.
Arneberg
,
J.
Müller
, and
R.
Manne
,
Chem. Phys.
83
,
53
-
67
(
1984
).
16.
H.
Ågren
,
A.
Flores-Riveros
,
H.
Jørgen
, and
H. J.
Aa Jensen
,
Phys. Scr.
40
,
745
-
750
(
1989
).
17.
A.
Flores-Riveros
and
H.
Ågren
,
Phys. Scr.
44
,
442
-
445
(
1991
).
18.
J. P.
Coe
and
M. J.
Paterson
,
Theor. Chem. Acc.
134
,
58
(
2015
).
19.
L.
Triguero
,
L. G. M.
Pettersson
, and
H.
Ågren
,
J. Phys. Chem. A
102
,
10599
-
10607
(
1998
).
20.
A.
Föhlisch
,
J.
Hasselström
,
P.
Bennich
,
N.
Wassdahl
,
O.
Karis
,
A.
Nilsson
,
L.
Triguero
,
M.
Nyberg
, and
L. G. M.
Pettersson
,
Phys. Rev. B
61
,
16229
-
16240
(
2000
).
21.
J.
Gladh
,
H.
Öberg
,
J.
Li
,
M. P.
Ljungberg
,
A.
Matsuda
,
H.
Ogasawara
,
A.
Nilsson
,
L. G. M.
Pettersson
, and
H.
Öström
,
J. Chem. Phys.
136
,
034702
(
2012
).
22.
M.
Leetmaa
,
M. P.
Ljungberg
,
A.
Lyubartsev
,
A.
Nilsson
, and
L. G. M.
Pettersson
,
J. Electron Spectrosc. Relat. Phenom.
177
,
135
-
157
(
2010
).
23.
T.
Tokushima
,
Y.
Harada
,
Y.
Horikawa
,
O.
Takahashi
,
Y.
Senba
,
H.
Ohashif
,
L. G. M.
Pettersson
,
A.
Nilsson
, and
S.
Shin
,
J. Electron Spectrosc. Relat. Phenom.
177
,
192
-
205
(
2010
).
24.
T. E.
Meehan
,
J.
McColl
, and
F. P.
Larkins
,
J. Electron Spectrosc. Relat. Phenom.
73
,
283
-
292
(
1995
).
25.
T. R.
Walsh
,
T. E.
Meehan
, and
F. P.
Larkins
,
J. Phys. B.: At. Mol. Opt. Phys.
29
,
207
-
220
(
1996
).
26.
M. P.
Ljungberg
,
J. J.
Mortensen
, and
L. G. M.
Pettersson
,
J. Electron Spectrosc. Relat. Phenom.
184
,
427
-
439
(
2011
).
27.
M. P.
Ljungberg
,
L. G. M.
Pettersson
, and
A.
Nilsson
,
J. Chem. Phys.
134
,
044513
(
2011
).
28.
N. A.
Besley
and
F.
Asmuruf
,
Phys. Chem. Chem. Phys.
12
,
12024
-
12039
(
2010
).
29.
N. A.
Besley
,
Chem. Phys. Lett.
542
,
42
-
46
(
2012
).
30.
J. D.
Wadey
and
N. A.
Besley
,
J. Chem. Theory Comput.
10
,
4557
-
4564
(
2014
).
31.
O. V.
Ershova
and
N. A.
Besley
,
Chem. Phys. Lett.
513
,
179
-
183
(
2011
).
32.
S.
Hirata
and
M.
Head-Gordon
,
Chem. Phys. Lett.
314
,
291
-
299
(
1999
).
33.
Y.
Zhang
,
S.
Mukamel
,
M.
Khalil
, and
N.
Govind
,
J. Chem. Theory Comput.
11
,
5804
-
5809
(
2015
).
34.
T.
Noro
,
M.
Sekiya
, and
T.
Koga
,
Theor. Chem. Acc.
131
,
1124
(
2012
).
35.
A.
Nakata
,
Y.
Imamura
,
T.
Ostuka
, and
H.
Nakai
,
J. Chem. Phys.
124
,
094105
(
2006
).
36.
A.
Nakata
,
Y.
Imamura
, and
H.
Nakai
,
J. Chem. Theory Comput.
3
,
1295
-
1305
(
2007
).
37.
N. A.
Besley
and
A.
Noble
,
J. Phys. Chem. C
111
,
3333
-
3400
(
2007
).
38.
N. A.
Besley
,
M. J. G.
Peach
, and
D. J.
Tozer
,
Phys. Chem. Chem. Phys.
11
,
10350
-
10358
(
2009
).
39.
A. T. B.
Gilbert
,
N. A.
Besley
, and
P. M. W.
Gill
,
J. Phys. Chem. A
112
,
13164
-
13171
(
2008
).
40.
N. A.
Besley
,
A. T. B.
Gilbert
, and
P. M. W.
Gill
,
J. Chem. Phys.
130
,
124308
(
2009
).
41.
F. A.
Asmuruf
and
N. A.
Besley
,
Chem. Phys. Lett.
463
,
267
-
271
(
2008
).
42.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
-
5652
(
1993
).
43.
P. J.
Stephens
,
F. J.
Devlin
,
C. F.
Chabalowski
, and
M. J.
Frisch
,
J. Phys. Chem.
98
,
11623
-
11627
(
1994
).
44.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
-
3100
(
1988
).
45.
J. P.
Perdew
,
Phys. Rev. B
33
,
8822
-
8824
(
1986
).
46.
C. T.
Lee
,
W. T.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
-
789
(
1988
).
47.
P. A. M.
Dirac
,
Proc. Cambridge Philos. Soc.
26
,
376
-
385
(
1930
).
48.
S. H.
Vosko
,
L.
Wilk
, and
M.
Nusair
,
Can. J. Phys.
58
,
1200
-
1211
(
1980
).
49.
R.
Krishan
,
J. S.
Binkley
,
R.
Seeger
, and
J. A.
Pople
,
J. Chem. Phys.
72
,
650
-
654
(
1980
).
50.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
90
,
1007
-
1023
(
1989
).
51.
A.
Schafer
,
H.
Horn
, and
R.
Ahlrichs
,
J. Chem. Phys.
97
,
2571
-
2577
(
1992
).
52.
D. E.
Woon
and
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
98
,
1358
-
1371
(
1993
).
53.
N. B.
Balabanov
and
K. A.
Peterson
,
J. Chem. Phys.
123
,
064107
(
2005
).
54.
Y.
Shao
,
Z.
Gan
,
E.
Epifanovsky
,
A. T. B.
Gilbert
,
M.
Wormit
,
J.
Kussmann
,
A. W.
Lange
,
A.
Behn
,
J.
Deng
,
X.
Feng
 et al,
Mol. Phys.
113
,
184
-
215
(
2005
).
55.
D.
Robinson
and
N. A.
Besley
,
Phys. Chem. Chem. Phys.
12
,
9667
-
9676
(
2010
).
56.
N. A.
Besley
and
D.
Robinson
,
Faraday Discuss.
148
,
55
-
70
(
2011
).
57.
M.
Schindler
and
W.
Kutzelnigg
,
J. Chem. Phys.
76
,
1919
-
1933
(
1982
).
58.
S.
Bernadotte
,
A. J.
Atkins
, and
C. R.
Jacob
,
J. Chem. Phys.
137
,
204106
(
2012
).
59.
G.
Capano
,
T. J.
Penfold
,
N. A.
Besley
,
C. J.
Milne
,
M.
Reinhard
,
H.
Rittmann-Frank
,
P.
Glatzel
,
R.
Abela
,
U.
Rothlisberger
,
M.
Chergui
, and
I.
Tavernelli
,
Chem. Phys. Lett.
580
,
179
-
184
(
2013
).
You do not currently have access to this content.