We use molecular dynamics simulations to study the thermodynamics, structure, and dynamics of the Li2CO3–K2CO3 (62:38 mol. %) eutectic mixture. We present a new classical non-polarizable force field for this molten salt mixture, optimized using experimental and first principles molecular dynamics simulations data as reference. This simple force field allows efficient molecular simulations of phenomena at long time scales. We use this optimized force field to describe the behavior of the eutectic mixture in the 900–1100 K temperature range, at pressures between 0 and 5 GPa. After studying the equation of state in these thermodynamic conditions, we present molecular insight into the structure and dynamics of the melt. In particular, we present an analysis of the temperature and pressure dependence of the eutectic mixture’s self-diffusion coefficients, viscosity, and ionic conductivity.

1.
F.
Gaillard
,
M.
Malki
,
G.
Iacono-Marziano
,
M.
Pichavant
, and
B.
Scaillet
,
Science
322
,
1363
1365
(
2008
).
2.
A. P.
Jones
,
M.
Genge
, and
L.
Carmody
,
Rev. Mineral. Geochem.
75
,
289
322
(
2013
).
3.
X.
Li
,
N.
Xu
,
L.
Zhang
, and
K.
Huang
,
ECS Trans.
35
,
1267
1273
(
2011
).
4.
R.
Vuilleumier
,
A.
Seitsonen
,
N.
Sator
, and
B.
Guillot
,
Geochim. Cosmochim. Acta
141
,
547
(
2014
).
5.
D.
Corradini
,
F.-X.
Coudert
, and
R.
Vuilleumier
, “
Carbon dioxide transport in molten calcium carbonate occurs through an oxo-Grotthuss mechanism via a pyrocarbonate anion
,”
Nat. Chem.
(published online).
6.
J. T. W. M.
Tissen
and
G. J. M.
Janssen
,
Mol. Phys.
71
,
413
(
1990
).
8.
M. F.
Costa
and
M. C. C.
Ribeiro
,
J. Mol. Liq.
138
,
61
(
2008
).
9.
See http://www.cp2k.org/ for the CP2K quantum chemistry and solid state physics software package.
10.
J.
VandeVondele
 et al.,
Comput. Phys. Commun.
167
,
103
(
2005
).
11.
G.
Lippert
,
J.
Hutter
, and
M.
Parrinello
,
Mol. Phys.
92
,
477
(
1997
).
12.
S.
Goedecker
,
M.
Teter
, and
J.
Hutter
,
Phys. Rev. B
54
,
1703
(
1996
).
13.
C.
Hartwigsen
,
S.
Goedecker
, and
J.
Hutter
,
Phys. Rev. B
58
,
3641
(
1998
).
14.
M.
Krack
,
Theor. Chem. Acc.
114
,
145
(
2005
).
15.
J.
VandeVondele
and
J.
Hutter
,
J. Chem. Phys.
127
,
114105
(
2007
).
16.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
).
17.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
18.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
,
J. Chem. Phys.
132
,
154104
(
2010
).
19.
G. J.
Janz
, “
Thermodynamic and transport properties for molten salts: Correlation equations for critically evaluated density, surface tension, electrical conductance and viscosity data
,”
J. Phys. Chem. Ref. Data
17
(
Suppl. 2
) (
1988
), available at http://www.nist.gov/data/PDFfiles/jpcrdS2Vol17.pdf.
20.
G.
Bussi
,
D.
Donadio
, and
M.
Parrinello
,
J. Chem. Phys.
126
,
014101
(
2007
).
21.
J. T. W. M.
Tissen
,
G. J. M.
Janssen
, and
P.
van der Eerden
,
Mol. Phys.
82
,
101
(
1994
).
22.
T.
Koishi
,
S.
Kawase
,
S.
Tamaki
, and
T.
Ebisuzaki
,
J. Phys. Soc. Jpn.
69
,
3291
(
2000
).
23.
W. G.
Hoover
,
Phys. Rev. A
31
,
1695
(
1985
).
24.
S.
Melchionna
,
G.
Ciccotti
, and
B. L.
Holian
,
Mol. Phys.
78
,
533
(
1993
).
25.
I. T.
Todorov
,
W.
Smith
,
K.
Trachenko
, and
M. T.
Dove
,
J. Mater. Chem.
16
,
1911
(
2006
).
26.
K.
Refson
,
Comput. Phys. Commun.
126
,
310
(
2000
).
28.
G. J.
Janz
and
N. P.
Bansal
,
J. Phys. Chem. Ref. Data
11
,
505
(
1982
).
29.
Y.
Kanai
,
K.
Fukunaga
,
K.
Terasaka
, and
S.
Fujioka
,
Chem. Eng. Sci.
100
,
153
(
2013
).
30.
G. J.
Janz
 et al.,
Physical Properties Data Compilations Relevant to Energy Storage
,
National Standard Reference Data Series
(
National Bureau of Standards
,
USA
,
1979
), Vol.
61
.
31.
V.
Lair
,
V.
Albin
,
A.
Ringuedé
, and
M.
Cassir
,
Int. J. Hydrogen Energy
37
,
19357
(
2012
).
32.
G. E.
Murch
,
Solid State Ionics
7
,
177
(
1982
).
33.
H. K.
Kashyap
,
H. V. R.
Annapureddy
,
O.
Ranieri
, and
C. J.
Margulis
,
J. Phys. Chem. B
115
,
13212
(
2011
).
You do not currently have access to this content.