The ionic stochastic motions in the molten alkali halide NaF are investigated by quasielastic neutron scattering and first principles molecular dynamics simulation. Quasielastic neutron scattering was employed to extract the diffusion behavior of the sodium ions in the melt. An extensive first principles based simulation on a box of up to 512 particles has been performed to complement the experimental data. From that large box, a smaller 64-particle box has then been simulated over a runtime of 60 ps. A good agreement between calculated and neutron data on the level of spectral shape has been obtained. The obtained sodium diffusion coefficients agree very well. The simulation predicts a fluorine diffusion coefficient similar to the sodium one. Applying the Nernst-Einstein equation, a remarkable large cross correlation between both ions can be deduced. The velocity cross correlations demonstrate a positive correlation between the ions over a period of 0.1 ps. That strong correlation is evidence that the unlike ions do not move completely statistically independent and have a strong association over a short period of time.

1.
N. H.
March
and
M. P.
Tosi
,
Coulomb Liquids
(
Academic Press
,
San Diego
,
1984
).
2.
M.
Rovere
and
M. P.
Tosi
,
Rep. Prog. Phys.
49
,
1001
(
1986
).
S.
Delpech
,
E.
Merle-Lucotte
,
D.
Heuer
,
M.
Allibert
,
V.
Ghetta
,
C.
Le-Brun
,
X.
Doligez
, and
G. J.
Picard
,
Fluorine Chem.
360
,
11
(
2009
).
4.
L. C.
Dewan
,
C.
Simon
,
P. A.
Madden
,
L.
Hobbs
, and
M.
Salanne
,
J. Nucl. Mater.
434
,
322
(
2013
).
5.
Z.
Akdeniz
and
P. A.
Madden
,
J. Phys. Chem. B
110
,
6683
(
2006
);
[PubMed]
V.
Lacassagne
,
C.
Bessada
,
P.
Florian
,
S.
Bouvet
,
B.
Ollivier
,
J. P.
Coutures
, and
D.
Massiot
,
J. Phys. Chem. B
106
,
1862
(
2002
);
S.
Jahn
,
J.
Ollivier
, and
F.
Demmel
,
Solid State Ionics
179
,
1957
(
2008
);
F.
Demmel
,
T.
Seydel
, and
S.
Jahn
,
Solid State Ionics
180
,
1257
(
2009
).
6.
P.
Wasserscheid
and
T.
Welton
,
Ionic Liquids in Synthesis
(
Wiley VCH
,
Weinheim
,
2007
);
N. V.
Plechkova
and
K. R.
Seddon
,
Chem. Soc. Rev.
37
,
123
(
2008
).
[PubMed]
7.
A.
Naji
,
M.
Kanduc
,
J.
Forsman
, and
R.
Podgornik
,
J. Chem. Phys.
139
,
24502
(
2013
).
8.
M. J. L.
Sangster
and
M.
Dixon
,
Adv. Phys.
25
,
247
(
1976
).
9.
F. G.
Edwards
,
J. E.
Enderby
,
R. A.
Howe
, and
D. I.
Page
,
J. Phys. C
8
,
3483
(
1975
);
E. W. J.
Mitchell
,
P. F. J.
Poncet
, and
R. J.
Stewart
,
Philos. Mag.
34
,
721
(
1976
);
J. Y.
Derrien
and
J.
Dupuy
,
J. Phys.
36
,
191
(
1975
);
M. A.
Howe
,
R. L.
McGreevy
, and
W. S.
Howells
,
J. Phys.: Condens. Matter
1
,
3433
(
1989
).
10.
J. P.
Hansen
and
I. R.
McDonald
,
Phys. Rev. A
11
,
2111
(
1975
).
11.
D. L.
Price
and
J. R. D.
Copley
,
Phys. Rev. A
11
,
2124
(
1975
);
J. R. D.
Copley
and
A.
Rahman
,
Phys. Rev. A
13
,
2276
(
1976
).
12.
R. L.
McGreevy
,
Solid State Physics
40
,
247
(
1987
).
13.
F.
Demmel
,
D.
Szubrin
,
W. C.
Pilgrim
,
A.
De Francesco
, and
F.
Formisano
,
Phys. Rev. E
92
,
012307
(
2015
).
14.
F.
Demmel
,
S.
Hosokawa
,
M.
Lorenzen
, and
W.-C.
Pilgrim
,
Phys. Rev. B
69
,
012203
(
2004
).
15.
F.
Demmel
,
S.
Hosokawa
,
W.-C.
Pilgrim
, and
S.
Tsutsui
,
Nucl. Instrum. Methods Phys. Res., Sect. B
238
,
98
(
2005
).
16.
F.
Demmel
,
S.
Hosokawa
, and
W.-C.
Pilgrim
,
J. Alloys Compd.
452
,
143
(
2008
).
17.
S.
Hosokawa
,
F.
Demmel
,
W.-C.
Pilgrim
,
M.
Inui
,
S.
Tsutsui
, and
A.
Baron
,
Electrochemistry
77
,
608
(
2009
).
18.
G. J.
Janz
,
Molten Salts Handbook
(
Academic Press
,
New York
,
1967
).
19.
M.
Leveques
,
V.
Sarou-Kanian
,
M.
Salanne
,
M.
Gobet
,
M.
Groult
,
C.
Bessada
,
P. A.
Madden
, and
A.
Rollet
,
J. Chem. Phys.
138
,
184503
(
2013
).
20.
R. L.
McGreevy
,
E. W. J.
Mitchell
, and
F. M. A.
Margaca
,
J. Phys. C
17
,
775
(
1984
).
21.
O.
Alcaraz
,
F.
Demmel
, and
J.
Trullas
,
J. Chem. Phys.
141
,
244508
(
2014
).
22.
G.
Ciccotti
,
G.
Jacucci
, and
I. R.
McDonald
,
Phys. Rev. A
13
,
426
(
1976
).
23.
O.
Alacaraz
and
J.
Trullas
,
J. Chem. Phys.
113
,
10635
(
2000
);
B.
Morgan
and
P.
Madden
,
J. Chem. Phys.
120
,
1402
(
2004
).
[PubMed]
24.
G.
Jacucci
,
I. R.
McDonald
, and
A.
Rahman
,
Phys. Rev. A
13
,
1581
(
1976
).
26.
M.
Wilson
and
P. A.
Madden
,
J. Phys.: Condens. Matter
6
,
A151
(
1994
);
P. A.
Madden
and
M.
Wilson
,
Chem. Soc. Rev.
25
,
339
(
1996
).
27.
O.
Alacaraz
,
V.
Bitrian
, and
J.
Trullas
,
J. Chem. Phys.
127
,
154508
(
2007
);
[PubMed]
O.
Alacaraz
and
J.
Trullas
,
J. Mol. Liq.
136
,
227
(
2007
).
28.
R. J.
Heaton
,
P. A.
Madden
,
S. J.
Clark
, and
S.
Jahn
,
J. Chem. Phys.
125
,
14104
(
2006
).
29.
M.
Salanne
,
R.
Vuilleumier
,
P. A.
Madden
,
C.
Simon
,
P.
Turq
, and
B.
Guillot
,
J. Phys.: Condens. Matter
20
,
494207
(
2008
).
30.
M.
Salanne
and
P. A.
Madden
,
Mol. Phys.
119
,
2299
(
2011
).
31.
M.
Salanne
,
C.
Simon
,
P.
Turq
, and
P. A.
Madden
,
J. Fluorine Chem.
130
,
38
(
2009
).
32.
Y.
Ishii
,
K.
Sato
,
M.
Salanne
,
P. A.
Madden
, and
N.
Ohtori
,
J. Phys. Chem. B
118
,
3385
(
2014
).
33.
D.
Marx
and
J.
Hutter
,
Ab InitioMolecular Dynamics: Basic Theory and Advanced Methods
(
Cambridge University Press
,
Cambridge
,
2009
).
34.
S.
Hazebroucq
,
G. S.
Picard
,
C.
Adamo
,
T.
Heine
,
S.
Gemming
, and
G.
Seifert
,
J. Chem. Phys.
123
,
134510
(
2005
).
35.
N.
Galamba
and
B. J.
Costa Cabral
,
J. Chem. Phys.
126
,
24502
(
2007
);
N.
Galamba
and
B. J.
Costa Cabral
,
J. Chem. Phys.
127
,
94506
(
2007
).
36.
A.
Bengston
,
H.
Nam
,
S.
Saha
,
R.
Sakidja
, and
D.
Morgan
,
Comput. Mater. Sci.
83
,
362
(
2014
).
37.
S. J.
Clark
,
M. D.
Segall
,
C. J.
Pickard
,
P. J.
Hasnip
,
M. J.
Probert
,
K.
Refson
, and
M. C.
Payne
,
Z. Kristallogr. - Cryst. Mater.
220
,
567
(
2005
).
38.
D.
Quigley
and
M. I. J.
Probert
,
J. Chem. Phys.
120
,
11432
(
2004
).
39.
J.
Sanchez
,
J.
Fullea
,
M. C.
Andrade
, and
P. L.
de Andres
,
Phys. Rev. B
81
,
132102
(
2010
).
40.
S.
Mukhopadhyay
,
M.
Gutmann
, and
F.
Fernandez-Alonso
,
Phys. Chem. Chem. Phys.
16
,
26234
(
2014
).
41.
V. F.
Sears
,
Neutron News
3
(
3
),
29
-
37
(
1992
).
42.
M. T. F.
Telling
and
K. H.
Andersen
,
Phys. Chem. Chem. Phys.
7
,
1255
(
2005
);
[PubMed]
F.
Demmel
and
K.
Pokhilchuk
,
Nucl. Instrum. Methods Phys. Res., Sect. A
767
,
426
(
2014
).
43.
F.
Demmel
,
D.
Pasqualini
, and
C.
Morkel
,
Phys. Rev. B
74
,
184207
(
2006
).
44.
See http://www.mantidproject.org for more information about the Mantid data analysis framework.
45.
A. M.
Rappe
,
K. M.
Rabe
,
E.
Kaxiras
, and
J. D.
Joannopoulos
,
Phys. Rev. B
41
,
1227
(
1990
).
46.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
47.
J. P.
Hansen
and
I.
McDonald
,
Theory of Simple Liquids
(
Academic Press
,
London
,
2006
).
48.
G. R.
Kneller
,
V.
Keiner
,
M.
Kneller
, and
M.
Schiller
,
Comput. Phys. Commun.
91
,
191
(
1995
).
49.
G. J.
Janz
and
N. P.
Bansal
,
J. Phys. Chem. Ref. Data
11
(
3
),
505
(
1982
).
50.
W. G.
Hoover
and
F. H.
Ree
,
J. Chem. Phys.
49
,
3609
(
1968
).
51.
J. A.
Barker
and
D.
Henderson
,
Rev. Mod. Phys.
48
,
587
(
1976
).
52.
S.
Cikit
,
Z.
Akdeniz
, and
P. A.
Madden
,
J. Phys. Chem. B
118
,
1064
(
2014
).
You do not currently have access to this content.