Iron sulfide minerals, including mackinawite (FeS), are relevant in origin of life theories, due to their potential catalytic activity towards the reduction and conversion of carbon dioxide (CO2) to organic molecules, which may be applicable to the production of liquid fuels and commodity chemicals. However, the fundamental understanding of CO2 adsorption, activation, and dissociation on FeS surfaces remains incomplete. Here, we have used density functional theory calculations, corrected for long-range dispersion interactions (DFT-D2), to explore various adsorption sites and configurations for CO2 on the low-index mackinawite (001), (110), and (111) surfaces. We found that the CO2 molecule physisorbs weakly on the energetically most stable (001) surface but adsorbs relatively strongly on the (011) and (111) FeS surfaces, preferentially at Fe sites. The adsorption of the CO2 on the (011) and (111) surfaces is shown to be characterized by significant charge transfer from surface Fe species to the CO2 molecule, which causes a large structural transformation in the molecule (i.e., forming a negatively charged bent CO2δ species, with weaker C—O confirmed via vibrational frequency analyses). We have also analyzed the pathways for CO2 reduction to CO and O on the mackinawite (011) and (111) surfaces. CO2 dissociation is calculated to be slightly endothermic relative to the associatively adsorbed states, with relatively large activation energy barriers of 1.25 eV and 0.72 eV on the (011) and (111) surfaces, respectively.

1.
M.
Aresta
,
Carbon Dioxide as Chemical Feedstock
(
Wiley-VCH
,
Weinheim
,
2010
).
2.
G.
Centi
and
S.
Perathoner
,
Top. Catal.
52
,
948
(
2009
).
3.
V.
Havran
,
M. P.
Duduković
, and
C. S.
Lo
,
Ind. Eng. Chem. Res.
50
,
7089
(
2011
).
4.
A. J.
Morris
,
G. J.
Meyer
, and
E.
Fujita
,
Acc. Chem. Res.
42
,
1983
(
2009
).
5.
S. C.
Roy
,
O. K.
Varghese
,
M.
Paulose
, and
C. A.
Grimes
,
ACS Nano
4
,
1259
(
2010
).
6.
R. D.
Richardson
,
E. J.
Holland
, and
B. K.
Carpenter
,
Nat. Chem.
3
,
301
(
2011
).
7.
J.
Baltrusaitis
and
V. H.
Grassian
,
J. Phys. Chem. B
109
,
12227
(
2005
).
8.
P.
Liu
,
Y. M.
Choi
,
Y.
Yang
, and
M. G.
White
,
J. Phys. Chem. A
114
,
3888
(
2010
).
10.
T.
Yan
,
S.
Wang
,
Y.
Zhou
,
Z.
Cao
, and
G.
Li
,
J. Phys. Chem. C
113
,
19389
(
2009
).
11.
S. F.
Li
and
Z. X.
Guo
,
J. Phys. Chem. C
114
,
11456
(
2010
).
12.
D.
Saha
,
Z.
Bao
,
F.
Jia
, and
S.
Deng
,
Environ. Sci. Technol.
44
,
1820
(
2010
).
13.
B.
Arstad
,
H.
Fjellvåg
,
K. O.
Kongshaug
,
O.
Swang
, and
R.
Blom
,
Adsorption
14
,
755
(
2008
).
14.
F.
Salles
,
A.
Ghoufi
,
G.
Maurin
,
R. G.
Bell
,
C.
Mellot-Draznieks
, and
G.
Férey
,
Angew. Chem., Int. Ed.
47
,
8487
(
2008
).
15.
L.
Valenzano
,
B.
Civalleri
,
S.
Chavan
,
G. T.
Palomino
,
C. O.
Areán
, and
S.
Bordiga
,
J. Phys. Chem. C
114
,
11185
(
2010
).
16.
D.
Walther
,
M.
Rubens
, and
S.
Rau
,
Coord. Chem. Rev.
182
,
67
(
1999
).
17.
Y.
Ohnishi
,
T.
Matsunaga
,
Y.
Nakao
,
H.
Sato
, and
S.
Sakaki
,
J. Am. Chem. Soc.
127
,
4021
(
2005
).
18.
D.
Darensbourg
,
J. Chem. Rev.
107
,
2388
(
2007
).
19.
M.
Isaacs
,
J. C.
Canales
,
M. J.
Aguirre
,
G.
Estiu
,
F.
Caruso
,
G.
Ferraudi
, and
J.
Costamagna
,
Inorg. Chim. Acta
339
,
224
(
2002
).
20.
J.
Li
,
G.
Jia
, and
Z.
Lin
,
Organometallics
27
,
3892
(
2008
).
21.
C. C.
Lu
,
C. T.
Saouma
,
M. W.
Day
, and
J. C.
Peters
,
J. Am. Chem. Soc.
129
,
4
(
2006
).
22.
H. I.
Karunadasa
,
E.
Montalvo
,
Y.
Sun
,
M.
Majda
,
J. R.
Long
, and
C. J.
Chang
,
Science
335
,
698
(
2012
).
23.
B.
Hinnemann
,
P. G.
Moses
,
J.
Bonde
,
K. P.
Jørgensen
,
J. H.
Nielsen
,
S.
Horch
,
I.
Chorkendorff
, and
J. K.
Nørskov
,
J. Am. Chem. Soc.
127
,
5308
(
2005
).
24.
R. R.
Chianelli
,
M. H.
Siadati
,
M. P.
De la Rosa
,
G.
Berhault
,
J. P.
Wilcoxon
,
R.
Bearden
, Jr.
, and
B. L.
Abram
,
Catal. Rev.
48
,
1
(
2006
).
25.
T. F.
Jaramillo
,
K. P.
Jørgensen
,
J.
Bonde
,
J. H.
Nielsen
,
S.
Horch
, and
I.
Chorkendorff
,
Science
317
,
100
(
2007
).
26.
M.
Asadi
,
B.
Kumar
,
A.
Behranginia
,
B. A.
Rosen
,
A.
Baskin
,
N.
Repnin
,
D.
Pisasale
,
P.
Phillips
,
W.
Zhu
,
R.
Haasch
,
R. F.
Klie
,
P.
Krá
,
J.
Abiade
, and
A.
Salehi-Khojin
,
Nat. Commun.
5
,
1
(
2014
).
27.
W.
Martin
,
J.
Baross
,
D.
Kelley
, and
M. J.
Russell
,
Nat. Rev. Microbiol.
6
,
805
(
2008
).
28.
G. D.
Cody
,
Annu. Rev. Earth Planet. Sci.
32
,
569
(
2008
).
29.
M. J.
Russell
and
A. J.
Hall
,
J. Geol. Soc.
154
,
377
(
1997
).
30.
G.
Wächtershäuser
,
Prog. Biophys. Mol. Biol.
58
,
85
(
1992
).
31.
A.
Roldan
,
N.
Hollingsworth
,
A.
Roffey
,
H.-U.
Islam
,
J. B. M.
Goodall
,
C. R. A.
Catlow
,
J. A.
Darr
,
W.
Bras
,
G.
Sankar
,
K. B.
Holt
,
G.
Hogarth
, and
N. H.
de Leeuw
,
Chem. Commun.
51
,
7501
(
2015
).
32.
S.
Haider
,
A.
Roldan
, and
N. H.
de Leeuw
,
J. Phys. Chem. C
118
,
1958
(
2014
).
33.
N. Y.
Dzade
,
A.
Roldan
, and
N. H.
de Leeuw
,
J. Chem. Phys.
139
,
124708
(
2013
).
34.
N. Y.
Dzade
,
A.
Roldan
, and
N. H.
de Leeuw
,
Phys. Chem. Chem. Phys.
16
,
15444
(
2014
).
35.
A.
Parkin
,
J.
Seravalli
,
K. A.
Vincent
,
S. W.
Ragsdale
, and
F. A.
Armstrong
,
J. Am. Chem. Soc.
129
,
10328
(
2007
).
36.
H. A.
Hansen
,
J. B.
Varley
,
A. A.
Peterson
, and
J. K.
Nørskov
,
J. Phys. Chem. Lett.
4
,
388
(
2013
).
37.
C.
Huber
and
G.
Wächtershäuser
,
Science
276
,
245
(
1997
).
38.
D.
Rickard
and
G. W.
Luther
,
Chem. Rev.
107
,
514
(
2007
).
39.
G.
Kresse
and
J.
Furthmuller
,
Comput. Mater. Sci.
6
,
15
(
1996
).
40.
G.
Kresse
and
J.
Furthmuller
,
Phys. Rev. B
54
,
11169
(
1996
).
41.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
48
,
13115
(
1993
).
42.
G.
Kresse
and
J.
Hafner
,
J. Phys.: Condens. Matter
6
,
8245
(
1994
).
43.
S.
Grimme
,
J. Comput. Chem.
27
,
1787
(
2006
).
44.
J. P.
Perdew
and
A.
Zunger
,
Phys. Rev. B
23
,
5048
(
1981
).
45.
J. P.
Perdew
,
J. A.
Chevary
,
S. H.
Vosko
,
K. A.
Jackson
,
M. R.
Pederson
,
D. J.
Singh
, and
C.
Fiolhais
,
Phys. Rev. B
46
,
6671
(
1992
).
46.
P. E.
Blöchl
,
Phys. Rev. B
50
,
17953
(
1994
).
47.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
48.
H. J.
Monkhorst
and
J. D.
Pack
,
Phys. Rev. B
13
,
5188
(
1976
).
49.
A. R.
Lennie
,
S. A. T.
Redfern
,
P. F.
Schofield
, and
D. J.
Vaughan
,
Mineral. Mag.
59
,
677
(
1995
).
50.
A. R.
Lennie
,
S. A. T.
Redfern
,
P. E.
Champness
,
C. P.
Stoddart
,
P. F.
Schofield
, and
D. J.
Vaughan
,
Am. Mineral.
82
,
302
(
1997
); available at http://www.minsocam.org/MSA/amMin/toc/Articles_Free/1997/Lennie_p302-309_97.pdf.
52.
E. F.
Bertaut
,
P.
Burlet
, and
J.
Chappert
,
Solid State Commun.
3
,
335
(
1965
).
53.
D. J.
Vaughan
and
M. S.
Ridout
,
J. Inorg. Nucl. Chem.
33
,
741
(
1971
).
54.
A. J.
Devey
,
R.
Grau-Crespo
, and
N. H.
de Leeuw
,
J. Phys. Chem. C
112
,
10960
(
2008
).
55.
A.
Subedi
,
L. J.
Zhang
,
D. J.
Singh
, and
M. H.
Du
,
Phys. Rev. B
78
,
134514
(
2008
).
56.
J.
Brgoch
and
G. J.
Miller
,
J. Phys. Chem. A
116
,
2234
(
2012
).
57.
H.
Ohfuji
and
D.
Rickard
,
Earth Planet. Sci. Lett.
241
,
227
(
2006
).
58.
G. W.
Watson
,
E. T.
Kelsey
,
N. H.
de Leeuw
,
D. J.
Harris
, and
S. C.
Parker
,
J. Chem. Soc., Faraday Trans.
92
,
433
(
1996
).
59.
P. W.
Tasker
,
J. Phys. C: Solid State Phys.
12
,
4977
(
1979
).
60.
G.
Henkelman
,
A.
Arnaldsson
, and
H.
Jonsson
,
Comput. Mater. Sci.
36
,
354
(
2006
).
61.
R. F. W.
Bader
,
Atoms in Molecules: A Quantum Theory
(
Oxford University Press
,
London
,
1994
).
62.
G.
Mills
,
H.
Jónsson
, and
G. K.
Schenter
,
Surf. Sci.
324
,
305
(
1995
).
63.
A.
Ulitsky
and
R.
Elber
,
J. Chem. Phys.
92
,
1510
(
1990
).
64.
B.
Hammer
and
J. K.
Nørskov
,
Adv. Catal.
45
,
71
(
2000
).
You do not currently have access to this content.