Stochastic effects dominate many chemical and biochemical processes. Their analysis, however, can be computationally prohibitively expensive and a range of approximation schemes have been proposed to lighten the computational burden. These, notably the increasingly popular linear noise approximation and the more general moment expansion methods, perform well for many dynamical regimes, especially linear systems. At higher levels of nonlinearity, it comes to an interplay between the nonlinearities and the stochastic dynamics, which is much harder to capture correctly by such approximations to the true stochastic processes. Moment-closure approaches promise to address this problem by capturing higher-order terms of the temporally evolving probability distribution. Here, we develop a set of multivariate moment-closures that allows us to describe the stochastic dynamics of nonlinear systems. Multivariate closure captures the way that correlations between different molecular species, induced by the reaction dynamics, interact with stochastic effects. We use multivariate Gaussian, gamma, and lognormal closure and illustrate their use in the context of two models that have proved challenging to the previous attempts at approximating stochastic dynamics: oscillations in p53 and Hes1. In addition, we consider a larger system, Erk-mediated mitogen-activated protein kinases signalling, where conventional stochastic simulation approaches incur unacceptably high computational costs.

1.
D. J.
Wilkinson
, “
Stochastic modelling for quantitative description of heterogeneous biological systems
,”
Nat. Rev. Genet.
10
(
2
),
122
133
(
2009
).
2.
D. T.
Gillespie
, “
Exact stochastic simulation of coupled chemical reactions
,”
J. Phys. Chem.
81
(
25
),
2340
2361
(
1977
).
3.
T. R.
Kiehl
,
R. M.
Mattheyses
, and
M. K.
Simmons
, “
Hybrid simulation of cellular behavior
,”
Bioinformatics
20
(
3
),
316
322
(
2004
).
4.
J.
Puchalka
and
A. M.
Kierzek
, “
Bridging the gap between stochastic and deterministic regimes in the kinetic simulations of the biochemical reaction networks
,”
Biophys. J.
86
(
3
),
1357
1372
(
2004
).
5.
M.
Komorowski
,
J.
Mikisz
, and
M. P. H.
Stumpf
, “
Decomposing noise in biochemical signaling systems highlights the role of protein degradation
,”
Biophys. J.
104
(
8
),
1783
1793
(
2013
).
6.
M.
Komorowski
,
B.
Finkenstadt
,
C.
Harper
, and
D.
Rand
, “
Bayesian inference of biochemical kinetic parameters using the linear noise approximation
,”
BMC Bioinf.
10
(
1
),
343
(
2009
).
7.
E. W. J.
Wallace
,
D. T.
Gillespie
,
K. R.
Sanft
, and
L. R.
Petzold
, “
Linear noise approximation is valid over limited times for any chemical system that is sufficiently large
,”
IET Syst. Biol.
6
(
4
),
102
115
(
2012
).
8.
C. A.
Gómez-Uribe
and
G. C.
Verghese
, “
Mass fluctuation kinetics: Capturing stochastic effects in systems of chemical reactions through coupled mean–variance computations
,”
J. Chem. Phys.
126
(
2
),
024109
(
2007
).
9.
M.
Ullah
and
O.
Wolkenhauer
, “
Investigating the two-moment characterisation of subcellular biochemical networks
,”
J. Theor. Biol.
260
(
3
),
340
352
(
2009
).
10.
A.
Ale
,
P.
Kirk
, and
M. P. H.
Stumpf
, “
A general moment expansion method for stochastic kinetic models
,”
J. Chem. Phys.
138
(
17
),
174101
(
2013
).
11.
L. A.
Goodman
, “
Population growth of the sexes
,” in
Mathematical Demography
,
Biomathematics
(
Springer
,
Berlin, Heidelberg
,
1977
), Vol.
6
, pp.
469
480
.
12.
P.
Whittle
, “
On the use of the normal approximation in the treatment of stochastic processes
,”
J. R. Stat. Soc., Ser. B
19
(
2
),
268
281
(
1957
).
13.
T. I.
Matis
and
I. G.
Guardiola
, “
Achieving moment closure through cumulant neglect
,”
Math. J.
12
(
1
),
2:1
2:18
(
2010
).
14.
C. S.
Gillespie
, “
Moment-closure approximations for mass-action models
,”
IET Syst. Biol.
3
(
1
),
52
58
(
2009
).
15.
P.
Milner
,
C. S.
Gillespie
, and
D. J.
Wilkinson
, “
Moment closure approximations for stochastic kinetic models with rational rate laws
,”
Math. Biosci.
231
(
2
),
99
104
(
2011
).
16.
I.
Krishnarajah
,
A.
Cook
,
G.
Marion
, and
G.
Gibson
, “
Novel moment closure approximations in stochastic epidemics
,”
Bull. Math. Biol.
67
(
4
),
855
873
(
2005
).
17.
I.
Krishnarajah
,
G.
Marion
, and
G.
Gibson
, “
Novel bivariate moment-closure approximations
,”
Math. Biosci.
208
(
2
),
621
643
(
2007
).
18.
C. H.
Lee
,
K.-H.
Kim
, and
P.
Kim
, “
A moment closure method for stochastic reaction networks
,”
J. Chem. Phys.
130
(
13
),
134107
(
2009
).
19.
M. J.
Keeling
, “
Metapopulation moments: Coupling, stochasticity and persistence
,”
J. Anim. Ecol.
69
(
5
),
725
736
(
2000
).
20.
A.
Singh
and
J. P.
Hespanha
, “
Lognormal moment closures for biochemical reactions
,” in
Proceedings of the 45th IEEE Conference on Decision and Control
(
IEEE
,
2006
), pp.
2063
2068
.
21.
A.
Singh
and
J. P.
Hespanha
, “
A derivative matching approach to moment closure for the stochastic logistic model
,”
Bull. Math. Biol.
69
(
6
),
1909
1925
(
2007
).
22.
A.
Singh
and
J. P.
Hespanha
, “
Approximate moment dynamics for chemically reacting systems
,”
IEEE Trans. Autom. Control
56
(
2
),
414
418
(
2011
).
23.
K.
Hausken
and
J. F.
Moxnes
, “
A closure approximation technique for epidemic models
,”
Math. Comput. Modell. Dyn. Syst.
16
,
555
574
(
2010
).
24.
P.
Smadbeck
and
Y. N.
Kaznessis
, “
A closure scheme for chemical master equations
,”
Proc. Natl. Acad. Sci. U. S. A.
110
(
35
),
14261
14265
(
2013
).
25.
R.
Grima
, “
A study of the accuracy of moment-closure approximations for stochastic chemical kinetics
,”
J. Chem. Phys.
136
(
15
),
154105
(
2012
).
26.
J. P.
Hespanha
, StochDynTools— a MATLAB toolbox to compute moment dynamics for stochastic networks of bio-chemical reactions. Available at http://www.ece.ucsb.edu/~hespanha, 2007.
27.
P.
Milner
,
C. S.
Gillespie
, and
D. J.
Wilkinson
, “
Moment closure based parameter inference of stochastic kinetic models
,”
Stat. Comput.
23
(
2
),
287
295
(
2013
).
28.
T.
Toni
,
D.
Welch
,
N.
Strelkowa
,
A.
Ipsen
, and
M. P. H.
Stumpf
, “
Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems
,”
J. R. Soc., Interface
6
(
31
),
187
202
(
2009
).
29.
I. G.
Johnston
, “
Efficient parametric inference for stochastic biological systems with measured variability
,”
Stat. Appl. Genet. Mol. Biol.
13
(
3
),
379
390
(
2014
).
30.
J.
Owen
,
D. J.
Wilkinson
, and
C. S.
Gillespie
, “
Likelihood free inference for Markov processes: A comparison
,”
Stat. Appl. Genet. Mol. Biol.
14
(
2
),
189
209
(
2015
).
31.
P.
Kirk
,
T. W.
Thorne
, and
M. P. H.
Stumpf
, “
Model selection in systems and synthetic biology
,”
Curr. Opin. Biotechnol.
24
(
4
),
767
774
(
2013
).
32.
P.
Fearnhead
,
D.
Prangle
,
M. P.
Cox
,
P. J.
Biggs
, and
N. P.
French
, “
Semi-automatic selection of summary statistics for ABC model choice
,”
Stat. Appl. Genet. Mol. Biol.
13
(
1
),
67
82
(
2014
).
33.
L. R.
Mead
and
N.
Papanicolaou
, “
Maximum-entropy in the problem of moments
,”
J. Math. Phys.
25
,
2404
2417
(
1984
).
34.
M.
Komorowski
,
M. J.
Costa
,
D. A.
Rand
, and
M. P. H.
Stumpf
, “
Sensitivity, robustness, and identifiability in stochastic chemical kinetics models
,”
Proc. Natl. Acad. Sci. U. S. A.
108
(
21
),
8645
8650
(
2011
).
35.
J.
Liepe
,
S.
Filippi
,
M.
Komorowski
, and
M. P. H.
Stumpf
, “
Maximizing the information content of experiments in systems biology
,”
PLoS Comput. Biol.
9
(
1
),
e1002888
(
2013
).
36.
D.
Silk
,
P.
Kirk
,
C. P.
Barnes
,
T.
Toni
, and
M. P. H.
Stumpf
, “
Model selection in systems biology depends on experimental design
,”
PLoS Comput. Biol.
10
(
6
),
e1003650
(
2014
).
37.
D.
Silk
,
P. D. W.
Kirk
,
C. P.
Barnes
,
T.
Toni
,
A.
Rose
,
S.
Moon
,
M. J.
Dallman
, and
M. P. H.
Stumpf
, “
Designing attractive models via automated identification of chaotic and oscillatory dynamical regimes
,”
Nat. Commun.
2
,
489
(
2011
).
38.
C. P.
Barnes
,
D.
Silk
,
X.
Sheng
, and
M. P. H.
Stumpf
, “
Bayesian design of synthetic biological systems
,”
Proc. Natl. Acad. Sci. U. S. A.
108
(
37
),
15190
15195
(
2011
).
39.
P.
Smadbeck
and
Y. N.
Kaznessis
, “
Chemical master equation closure for computer-aided synthetic biology
,”
Methods Mol. Biol. (Clifton, N.J.)
1244
,
179
191
(
2015
).
40.
Y.
Taniguchi
,
P. J.
Choi
,
G.-W.
Li
,
H.
Chen
,
M.
Babu
,
J.
Hearn
,
A.
Emili
, and
X. S.
Xie
, “
Quantifying e. coli proteome and transcriptome with single-molecule sensitivity in single cells
,”
Science
329
(
5991
),
533
538
(
2010
).
41.
N.
Friedman
,
L.
Cai
, and
X. S.
Xie
, “
Linking stochastic dynamics to population distribution: An analytical framework of gene expression
,”
Phys. Rev. Lett.
97
(
16
),
168302
(
2006
).
42.
L.
Isserlis
, “
On a formula for the product-moment coefficient of any order of a normal frequency distribution in any number of variables
,”
Biometrika
12
(
1-2
),
134
139
(
1918
).
43.
A.
Stefanek
,
M. C.
Guenther
, and
J. T.
Bradley
, “
Normal and inhomogeneous moment closures for stochastic process algebras
,” in
10th Workshop on Process Algebra and Stochastically Timed Activities 2011 (PASTA’11)
,
September 2011
.
44.
E. L.
Crow
and
K.
Shimizu
,
Lognormal Distributions: Theory and Applications
,
Statistics, Textbooks and Monographs
(
M. Dekker
,
New York
,
1988
), Vol.
88
.
45.
A. M.
Mathai
and
P. G.
Moschopoulos
, “
On a multivariate-gamma
,”
J. Multivar. Anal.
39
,
135
153
(
1991
).
46.
E.
Furman
, “
On a multivariate gamma distribution
,”
Stat. Probab. Lett.
78
,
2353
2360
(
2008
).
47.
N.
Geva-Zatorsky
,
N.
Rosenfeld
,
S.
Itzkovitz
,
R.
Milo
,
A.
Sigal
,
E.
Dekel
,
T.
Yarnitzky
,
Y.
Liron
,
P.
Polak
,
G.
Lahav
, and
U.
Alon
, “
Oscillations and variability in the p53 system
,”
Mol. Syst. Biol.
2
,
2006.0033
(
2006
).
48.
H. A.
Harrington
,
M.
Komorowski
,
M.
Beguerisse-Díaz
,
G. M.
Ratto
, and
M. P. H.
Stumpf
, “
Mathematical modeling reveals the functional implications of the different nuclear shuttling rates of erk1 and erk2
,”
Phys. Biol.
9
(
3
),
036001
(
2012
).
49.
P.
Kügler
, “
Moment fitting for parameter inference in repeatedly and partially observed stochastic biological models
,”
PLoS One
7
(
8
),
e43001
(
2012
).
50.
B.
Munsky
,
B.
Trinh
, and
M.
Khammash
, “
Listening to the noise: Random fluctuations reveal gene network parameters
,”
Mol. Syst. Biol.
5
(
1
),
318
(
2009
).
51.
E. G.
Gilbert
, “
The decoupling of multivariable systems by state feedback
,”
SIAM J. Control
7
(
1
),
50
63
(
1969
).
52.
J. F.
Apgar
,
J. E.
Toettcher
,
D.
Endy
,
F. M.
White
, and
B.
Tidor
, “
Stimulus design for model selection and validation in cell signaling
,”
PLoS Comput. Biol.
4
(
2
),
e30
(
2008
).
53.
V.
John
,
I.
Angelov
,
A. A.
Oencuel
, and
D.
Thevenin
, “
Techniques for the reconstruction of a distribution from a finite number of its moments
,”
Chem. Eng. Sci.
62
,
2890
2904
(
2007
).
54.
J.
Hasenauer
,
V.
Wolf
,
A.
Kazeroonian
, and
F. J.
Theis
, “
Method of conditional moments (mcm) for the chemical master equation : A unified framework for the method of moments and hybrid stochastic-deterministic models
,”
J. Math. Biol.
69
(
3
),
687
735
(
2013
).
55.
C. H.
Waddington
,
The Strategy of the Genes: A Discussion of Some Aspects of Theoretical Biology
(
Allen & Unwin
,
London
,
1957
).
56.
C.
Li
and
J.
Wang
, “
Quantifying Waddington landscapes and paths of non-adiabatic cell fate decisions for differentiation, reprogramming and transdifferentiation
,”
J. R. Soc., Interface
10
(
89
),
20130787
(
2013
).
57.
P.
Smadbeck
and
Y. N.
Kaznessis
, “
On a theory of stability for nonlinear stochastic chemical reaction networks
,”
J. Chem. Phys.
142
(
18
),
184101
(
2015
).
58.
D.
Schnoerr
,
G.
Sanguinetti
, and
R.
Grima
, “
Validity conditions for moment closure approximations in stochastic chemical kinetics
,”
J. Chem. Phys.
141
(
8
),
084103
(
2014
).
59.
K.
Erguler
and
M. P. H.
Stumpf
, “
Statistical interpretation of the interplay between noise and chaos in the stochastic logistic map
,”
Math. Biosci.
216
,
90
99
(
2008
).
60.
A.
Golightly
and
D. J.
Wilkinson
, “
Bayesian inference for stochastic kinetic models using a diffusion approximation
,”
Biometrics
61
(
3
),
781
788
(
2005
).
61.
A.
Golightly
and
D. J.
Wilkinson
, “
Bayesian parameter inference for stochastic biochemical network models using particle Markov chain Monte Carlo
,”
Interface Focus
1
(
6
),
807
820
(
2011
).
62.
A Python package that implements the method described here is available from our web page http://www.theosysbio.bio.ic.ac.uk.
You do not currently have access to this content.