The so-called “raspberry” model refers to the hybrid lattice-Boltzmann (LB) and Langevin molecular dynamics schemes for simulating the dynamics of suspensions of colloidal particles, originally developed by Lobaskin and Dünweg [New J. Phys. 6, 54 (2004)], wherein discrete surface points are used to achieve fluid-particle coupling. In this paper, we present a follow up to our study of the effectiveness of the raspberry model in reproducing hydrodynamic interactions in the Stokes regime for spheres arranged in a simple-cubic crystal [Fischer et al., J. Chem. Phys. 143, 084107 (2015)]. Here, we consider the accuracy with which the raspberry model is able to reproduce such interactions for particles confined between two parallel plates. To this end, we compare our LB simulation results to established theoretical expressions and finite-element calculations. We show that there is a discrepancy between the translational and rotational mobilities when only surface coupling points are used, as also found in Part I of our joint publication. We demonstrate that adding internal coupling points to the raspberry can be used to correct said discrepancy in confining geometries as well. Finally, we show that the raspberry model accurately reproduces hydrodynamic interactions between a spherical colloid and planar walls up to roughly one LB lattice spacing.

1.
V.
Lobaskin
and
B.
Dünweg
,
New J. Phys.
6
,
54
(
2004
).
2.
P.
Ahlrichs
and
B.
Dünweg
,
J. Chem. Phys.
111
,
8225
(
1999
).
3.
L.
Fischer
,
T.
Peter
,
C.
Holm
, and
J.
de Graaf
,
J. Chem. Phys.
143
,
084107
(
2015
).
4.
S.
Ollila
,
T.
Ala-Nissila
, and
C.
Denniston
,
J. Fluid Mech.
709
,
123
(
2012
).
5.
S.
Ollila
,
C.
Smith
,
T.
Ala-Nissila
, and
C.
Denniston
,
Multiscale Model. Simul.
11
,
213
(
2013
).
6.
F.
Mackay
and
C.
Denniston
,
J. Comput. Phys.
237
,
289
(
2013
).
8.
J.
Happel
and
H.
Brenner
,
Low Reynolds Number Hydrodynamics
, 2nd ed. (
Springer
,
Berlin, Heidelberg
,
1983
).
9.
10.
L.
Lobry
and
N.
Ostrowsky
,
Phys. Rev. B
53
,
12050
(
1996
).
11.
B.
Lin
,
J.
Yu
, and
S.
Rice
,
Phys. Rev. E
62
,
3909
(
2000
).
12.
13.
N.
Liron
and
S.
Mochon
,
J. Eng. Math.
10
,
287
(
1976
).
14.
B.
Cichocki
and
R.
Jones
,
Physica A
258
,
273
(
1998
).
15.
P.
Kalinay
,
J. Chem. Phys.
141
,
144101
(
2014
).
16.
E.
Dufresne
,
D.
Altman
, and
D.
Grier
,
Eur. Phys. Lett.
53
,
264
(
2001
).
17.
J.
Swan
and
J.
Brady
,
J. Fluid Mech.
687
,
254
(
2011
).
18.
L.
Pasol
 et al,
Chem. Eng. Sci.
66
,
4078
(
2011
).
19.
Y.
von Hansen
,
M.
Hinczewski
, and
R.
Netz
,
J. Chem. Phys.
134
,
235102
(
2011
).
20.
J.
Bleibel
,
A.
Dominguez
,
F.
Gunther
,
J.
Harting
, and
M.
Oettel
,
Soft Matter
10
,
2945
(
2014
).
21.
W.
Mitchell
and
S.
Spagnolie
,
J. Fluid Mech.
772
,
600
(
2015
).
22.
J.
Padding
and
W.
Briels
,
J. Chem. Phys.
132
,
054511
(
2010
).
23.
A.
Nikoubashman
,
C.
Likos
, and
G.
Kahl
,
Soft Matter
9
,
2603
(
2013
).
24.
R.
Tatsumi
and
R.
Yamamoto
,
J. Chem. Phys.
138
,
184905
(
2013
).
25.
A.
Dubov
,
S.
Schmieschek
,
E.
Asmolov
,
J.
Harting
, and
O.
Vinogradova
,
J. Chem. Phys.
140
,
034707
(
2014
).
26.
G.
Volpe
,
L.
Helden
,
T.
Brettschneider
,
J.
Wehr
, and
C.
Bechinger
,
Phys. Rev. Lett.
104
,
170602
(
2010
).
27.
T.
Brettschneider
,
G.
Volpe
,
L.
Helden
,
J.
Wehr
, and
C.
Bechinger
,
Phys. Rev. E
83
,
041113
(
2011
).
28.
S.
Dettmer
,
S.
Pagliara
,
K.
Misiunas
, and
U.
Keyser
,
Phys. Rev. E
89
,
062305
(
2014
).
29.
S.
Dettmer
,
U.
Keyser
, and
S.
Pagliara
,
Rev. Sci. Instrum.
85
,
023708
(
2014
).
30.
M.
Lisicki
,
B.
Cichocki
,
S.
Rogers
,
J.
Dhont
, and
P.
Lang
,
Soft Matter
10
,
4312
(
2014
).
31.
A.
Chakrabarty
,
F.
Wang
,
C.-Z.
Fan
,
K.
Sun
, and
Q.-H.
Wei
,
Langmuir
29
,
14396
(
2013
).
32.
J.
Jones
,
J.
van der Maarel
, and
P.
Doyle
,
Phys. Rev. Lett.
110
,
068101
(
2013
).
33.
A.
Chakrabarty
 et al,
Langmuir
30
,
13844
(
2014
).
34.
U.
Frisch
,
B.
Hasslacher
, and
Y.
Pomeau
,
Phys. Rev. Lett.
56
,
1505
(
1986
).
35.
A.
Goldman
,
R.
Cox
, and
H.
Brenner
,
Chem. Eng. Sci.
22
,
637
(
1967
).
36.
U.
Frisch
,
D.
d’Humières
,
B.
Hasslacher
,
Y.
Pomeau
, and
J.-P.
Rivet
,
Complex Syst.
1
,
649
(
1987
), available at http://www.complex-systems.com/abstracts/v01_i04_a07.html.
37.
39.
J.
Wu
and
C.
Aidun
,
Int. J. Numer. Methods Fluids
62
,
765
(
2010
).
40.
P.
Hoogerbrugge
and
J.
Koelman
,
Eur. Phys. Lett.
19
,
155
(
1992
).
41.
P.
Español
and
P.
Warren
,
Eur. Phys. Lett.
30
,
191
(
1995
).
42.
A.
Malevanets
and
R.
Kapral
,
J. Chem. Phys.
110
,
8605
(
1999
).
43.
T.
Ihle
and
D.
Kroll
,
Phys. Rev. E
67
,
066705
(
2003
).
44.
J.
Brady
and
G.
Bossis
,
Annu. Rev. Fluid Mech.
20
,
111
(
1988
).
45.
U.
Schiller
,
Comput. Phys. Commun.
185
,
2586
(
2014
).
46.
A.
Ladd
and
R.
Verberg
,
J. Stat. Phys.
104
,
1191
(
2001
).
47.
E.-J.
Ding
and
C.
Aidun
,
J. Stat. Phys.
112
,
685
(
2003
).
48.
D.
Roehm
,
S.
Kesselheim
, and
A.
Arnold
,
Soft Matter
10
,
5503
(
2014
).
49.
A.
Sierou
and
J.
Brady
,
J. Fluid Mech.
448
,
115
(
2001
).
You do not currently have access to this content.