Large-scale domain motions in alcohol dehydrogenase (ADH) have been observed previously by neutron spin-echo spectroscopy (NSE). We have extended the investigation on the dynamics of ADH in solution by using high-resolution neutron time-of-flight (TOF) and neutron backscattering (BS) spectroscopy in the incoherent scattering range. The observed hydrogen dynamics were interpreted in terms of three mobility classes, which allowed a simultaneous description of the measured TOF and BS spectra. In addition to the slow global protein diffusion and domain motions observed by NSE, a fast internal process could be identified. Around one third of the protons in ADH participate in the fast localized diffusive motion. The diffusion coefficient of the fast internal motions is around two third of the value of the surrounding D2O solvent. It is tempting to associate the fast internal process with solvent exposed amino acid residues with dangling side chains.

1.
K.
Henzler-Wildman
and
D.
Kern
, “
Dynamic personalities of proteins
,”
Nature
450
,
964
972
(
2007
).
2.
S.
Hammes-Schiffer
and
S. J.
Benkovic
, “
Relating protein motion to catalysis
,”
Annu. Rev. Biochem.
75
,
519
541
(
2006
).
3.
K. K.
Frederick
,
M. S.
Marlow
,
K. G.
Valentine
, and
A. J.
Wand
, “
Conformational entropy in molecular recognition by proteins
,”
Nature
448
,
325
329
(
2007
).
4.
A. M.
Stadler
,
M. M.
Koza
, and
J.
Fitter
, “
Determination of conformational entropy of fully and partially folded conformations of holo- and apomyoglobin
,”
J. Phys. Chem. B
119
,
72
82
(
2015
).
5.
S.-R.
Tzeng
and
C. G.
Kalodimos
, “
Protein activity regulation by conformational entropy
,”
Nature
488
,
236
240
(
2012
).
6.
V.
Jarymowycz
and
M.
Stone
, “
Fast time scale dynamics of protein backbones: NMR relaxation methods, applications, and functional consequences
,”
Chem. Rev.
106
,
1624
1671
(
2006
).
7.
T.
Igumenova
,
K.
Frederick
, and
A.
Wand
, “
Characterization of the fast dynamics of protein amino acid side chains using NMR relaxation in solution
,”
Chem. Rev.
106
,
1672
1699
(
2006
).
8.
R.
Biehl
,
B.
Hoffmann
,
M.
Monkenbusch
,
P.
Falus
,
S.
Preost
,
R.
Merkel
, and
D.
Richter
, “
Direct observation of correlated interdomain motion in alcohol dehydrogenase
,”
Phys. Rev. Lett.
101
,
138102
(
2008
).
9.
A. M.
Stadler
,
L.
Stingaciu
,
A.
Radulescu
,
O.
Holderer
,
M.
Monkenbusch
,
R.
Biehl
, and
D.
Richter
, “
Internal nanosecond dynamics in the intrinsically disordered myelin basic protein
,”
J. Am. Chem. Soc.
136
,
6987
6994
(
2014
).
10.
F.
Colonna-Cesari
,
D.
Perahia
,
M.
Karplus
,
H.
Eklund
,
C. I
Brändén
, and
O.
Tapia
, “
Interdomain motion in liver alcohol dehydrogenase: Structural and energetic analysis of the hinge bending mode
,”
J. Biol. Chem.
261
,
15273
15280
(
1986
).
11.
S.
Ramaswamy
,
D.
Kratzer
,
A.
Hershey
,
P.
Rogers
,
A.
Arnone
,
H.
Eklund
, and
B.
Plapp
, “
Crystallization and preliminary crystallographic studies of saccharomyces-cerevisiae alcohol dehydrogenase-I
,”
J. Mol. Biol.
235
,
777
779
(
1994
).
12.
E.
Negelein
and
H.
Wulff
, “
Diphospho-pyridin proteid, alcohol and acetaldehyde
,”
Biochem. Z.
293
,
351
389
(
1937
).
13.
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
, “
Vmd: Visual molecular dynamics
,”
J. Mol. Graphics
14
,
33
(
1996
).
14.
K.
Suhre
and
Y.
Sanejouand
, “
Elnemo: A normal mode web server for protein movement analysis and the generation of templates for molecular replacement
,”
Nucleic Acids Res.
32
,
W610
W614
(
2004
).
15.
S.
Provencher
, “
Contin: A general purpose constrained regularization program for inverting noisy linear algebraic and integral equations
,”
Comput. Phys. Commun.
27
,
229
(
1982
).
16.
J.
Ollivier
,
M.
Plazanet
,
H.
Schober
, and
J.
Cook
, “
First results with the upgraded IN5 disk chopper cold time-of-flight spectrometer
,”
Phys. B
350
,
173
177
(
2004
).
17.
J.
Ollivier
and
H.
Mutka
, “
In5 cold neutron time-of-flight spectrometer, prepared to tackle single crystal spectroscopy
,”
J. Phys. Soc. Jpn.
80
(
Suppl. B
),
SB003
(
2011
).
18.
J.
Wuttke
,
A.
Budwig
,
M.
Drochner
,
H.
Kämmerling
,
F.-J.
Kayser
,
H.
Kleines
,
V.
Ossovyi
,
L. C.
Pardo
,
M.
Prager
,
D.
Richter
,
G. J.
Schneider
,
H.
Schneider
, and
S.
Staringer
, “
SPHERES, Jülich’s high-flux neutron backscattering spectrometer at FRM II
,”
Rev. Sci. Instrum.
83
,
075109
(
2012
).
19.
H. H.
Paalman
and
C. J.
Pings
, “
Numerical evaluation of x-ray absorption factors for cylindrical samples and annular sample cells
,”
J. Appl. Phys.
33
,
2635
2639
(
1962
).
20.
A. M.
Stadler
,
J. P.
Embs
,
I.
Digel
,
G. M.
Artmann
,
T.
Unruh
,
G.
Bldt
, and
G.
Zaccai
, “
Cytoplasmic water and hydration layer dynamics in human red blood cells
,”
J. Am. Chem. Soc.
130
,
16852
16853
(
2008
).
21.
L. G.
Longsworth
, “
The mutual diffusion of light and heavy water
,”
J. Phys. Chem.
64
,
1914
1917
(
1960
).
22.
Y.
Edura
and
N.
Morishima
, “
Cold and thermal neutron scattering in liquid water - II: Scattering laws and group constants for H2O and D2O
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
545
,
309
318
(
2005
).
23.
A.
Lerbret
,
A.
Hedoux
,
B.
Annighoefer
, and
M.-C.
Bellissent-Funel
, “
Influence of pressure on the low-frequency vibrational modes of lysozyme and water: A complementary inelastic neutron scattering and molecular dynamics simulation study
,”
Proteins: Struct., Funct., Bioinf.
81
,
326
340
(
2013
).
24.
M.
Bellissent-Funel
and
J.
Teixeira
, “
Dynamics of water studied by coherent and incoherent inelastic neutron-scattering
,”
J. Mol. Struct.
250
,
213
230
(
1991
).
25.
M.
Bellissent-Funel
,
S.
Chen
, and
J.
Zanotti
, “
Single-particle dynamics of water-molecules in confined space
,”
Phys. Rev. E
51
,
4558
4569
(
1995
).
26.
A.
Stadler
,
M.
Monkenbusch
,
R.
Biehl
,
D.
Richter
, and
J.
Ollivier
, “
Neutron spin-echo and TOF reveals protein dynamics in solution
,”
J. Phys. Soc. Jpn.
82
,
SA016
(
2013
).
27.
F.
Volino
,
J.-C.
Perrin
, and
S.
Lyonnard
, “
Gaussian model for localized translational motion: Application to incoherent neutron scattering
,”
J. Phys. Chem. B
110
,
11217
11223
(
2006
).
28.
M.
Bée
,
Quasielastic Neutron Scattering
(
Adam Hilger
,
1988
).
29.
J.
de la Torre
,
M.
Huertas
, and
B.
Carrasco
, “
Calculation of hydrodynamic properties of globular proteins from their atomic-level structure
,”
Biophys. J.
78
,
719
730
(
2000
).
30.
W.
Hess
and
R.
Klein
, “
Generalized hydrodynamics of systems of Brownian particles
,”
Adv. Phys.
32
,
173
283
(
1983
).
31.
M.
Grimaldo
,
F.
Roosen-Runge
,
F.
Zhang
,
T.
Seydel
, and
F.
Schreiber
, “
Diffusion and dynamics of γ-globulin in crowded aqueous solutions
,”
J. Phys. Chem. B
118
,
7203
7209
(
2014
).
32.
D. R.
Dee
,
B.
Myers
, and
R. Y.
Yada
, “
Dynamics of thermodynamically stable, kinetically trapped, and inhibitor-bound states of pepsin
,”
Biophys. J.
101
,
1699
1709
(
2011
).
33.
K.
Hinsen
, “
The molecular modeling toolkit: A new approach to molecular simulations
,”
J. Comput. Chem.
21
,
79
85
(
2000
).
34.
J.-M.
Zanotti
,
M.-C.
Bellissent-Funel
, and
J.
Parello
, “
Hydration-coupled dynamics in proteins studied by neutron scattering and nmr: The case of the typical ef-hand calcium-binding parvalbumin
,”
Biophys. J.
76
,
2390
2411
(
1999
).
35.
A. M.
Stadler
,
C. J.
Garvey
,
J. P.
Embs
,
M. M.
Koza
,
T.
Unruh
,
G.
Artmann
, and
G.
Zaccai
, “
Picosecond dynamics in haemoglobin from different species: A quasielastic neutron scattering study
,”
Biochim. Biophys. Acta, Gen. Subj.
1840
,
2989
2999
(
2014
).
36.
V.
Sears
, “
Theory of cold neutron scattering by homonuclear diatomic liquids. 2. Hindered rotation
,”
Can. J. Phys.
44
,
1299
(
1966
).
37.
F.
Volino
and
A.
Dianoux
, “
Neutron incoherent-scattering law for diffusion in a potential of spherical-symmetry - general formalism and application to diffusion inside a sphere
,”
Mol. Phys.
41
,
271
279
(
1980
).
You do not currently have access to this content.