Real-time path integral calculations for the propagation of a system in contact with a harmonic dissipative environment often employ the iterative quasi-adiabatic propagator path integral (i-QuAPI) methodology. We compare two simple ways of applying this methodology to a bath initially in equilibrium with the localized state of the system (e.g., the donor in the case of charge transfer). The first way involves modifying the phase of the system via a time-local phase given in terms of integrals of the spectral density or in terms of the coefficients entering the QuAPI-discretized influence functional. In the iterative decomposition of the path integral, this approach requires consistent memory truncation to avoid extremely slow convergence. The second, alternative approach involves shifting the coordinate of the system, to bring the donor state in equilibrium with the bath, and requires no further modification of the i-QuAPI algorithm.

1.
A. O.
Caldeira
and
A. J.
Leggett
,
Physica A
121
,
587
(
1983
).
2.
A. J.
Leggett
,
S.
Chakravarty
,
A. T.
Dorsey
,
M. P. A.
Fisher
,
A.
Garg
, and
M.
Zwerger
,
Rev. Mod. Phys.
59
,
1
(
1987
).
3.
B. A.
Ruf
and
W. H.
Miller
,
J. Chem. Soc., Faraday Trans. 2
84
,
1523
(
1988
).
4.
U.
Weiss
,
Quantum Dissipative Systems
(
World Scientific
,
Singapore
,
1993
).
5.
6.
N.
Makri
,
J. Phys. Chem.
97
,
2417
(
1993
).
7.
M.
Topaler
and
N.
Makri
,
Chem. Phys. Lett.
210
,
448
(
1993
).
8.
M.
Topaler
and
N.
Makri
,
Chem. Phys. Lett.
210
,
285
(
1993
).
9.
D. E.
Makarov
and
N.
Makri
,
Chem. Phys. Lett.
221
,
482
(
1994
).
10.
G.
Ilk
and
N.
Makri
,
J. Chem. Phys.
101
,
6708
(
1994
).
11.
N.
Makri
and
D. E.
Makarov
,
J. Chem. Phys.
102
,
4600
(
1995
).
12.
N.
Makri
and
D. E.
Makarov
,
J. Chem. Phys.
102
,
4611
(
1995
).
13.
N.
Makri
,
J. Math. Phys.
36
,
2430
(
1995
).
14.
E.
Sim
and
N.
Makri
,
Chem. Phys. Lett.
249
,
224
(
1996
).
15.
E.
Sim
and
N.
Makri
,
Comput. Phys. Commun.
99
,
335
(
1997
).
16.
N.
Makri
,
J. Phys. Chem.
102
,
4414
(
1998
).
17.
N.
Makri
,
J. Chem. Phys.
111
,
6164
(
1999
).
18.
A. A.
Golosov
,
R. A.
Friesner
, and
P.
Pechukas
,
J. Chem. Phys.
110
,
138
(
1999
).
19.
A. A.
Golosov
,
R. A.
Friesner
, and
P.
Pechukas
,
J. Chem. Phys.
112
,
2095
(
2000
).
20.
E.
Sim
,
J. Chem. Phys.
115
,
4450
(
2001
).
21.
J.
Shao
and
N.
Makri
,
Chem. Phys.
268
,
1
(
2001
).
22.
J.
Shao
and
N.
Makri
,
J. Chem. Phys.
116
,
507
(
2002
).
23.
R.
Lambert
and
N.
Makri
,
Mol. Phys.
110
,
1967
(
2012
).
25.
N. S.
Dattani
,
AIP Adv.
2
,
012121
(
2012
).
26.
N. S.
Dattani
,
Comput. Phys. Commun.
184
,
2828
(
2013
).
27.
D. E.
Makarov
and
N.
Makri
,
Phys. Rev. E
52
,
5863
(
1995
).
28.
N.
Makri
,
J. Chem. Phys.
106
,
2286
(
1997
).
29.
G.
Taft
and
N.
Makri
,
J. Phys. B
31
,
209
(
1998
).
30.
K.
Dong
and
N.
Makri
,
Phys. Rev. A
70
,
042101
(
2004
).
31.
M.
Topaler
and
N.
Makri
,
J. Chem. Phys.
101
,
7500
(
1994
).
32.
E.
Sim
and
N.
Makri
,
J. Phys. Chem.
101
,
5446
(
1997
).
33.
R. D.
Coalson
and
D. G.
Evans
,
Chem. Phys.
296
,
117
(
2004
).
34.
M.
Thorwart
,
E.
Paladino
, and
M.
Grifoni
,
Chem. Phys.
296
,
333
(
2004
).
35.
P.
Nalbach
and
M.
Thorwart
,
Chem. Phys.
375
,
234
(
2010
).
36.
P.
Nalbach
,
A. J. A.
Achner
,
M.
Frey
,
M.
Grosser
,
C.
Bressler
, and
M.
Thorwart
,
J. Chem. Phys.
141
,
044304
(
2014
).
39.
H.
Kim
,
O.
Choi
, and
E.
Sim
,
J. Phys. Chem.
114
,
20394
(
2010
).
40.
H.
Kim
and
E.
Sim
,
J. Phys. Chem.
114
,
1312
(
2010
).
41.
J.-C.
Lee
,
O.
Choi
, and
E.
Sim
,
J. Phys. Chem. Lett.
3
,
714
(
2012
).
42.
M.
Sahrapour
and
N.
Makri
,
J. Chem. Phys.
132
,
134506
(
2010
).
43.
M.
Sahrapour
and
N.
Makri
,
J. Chem. Phys.
138
,
114109
(
2013
).
44.
D.
Segal
,
A. J.
Millis
, and
D. R.
Reichman
,
Phys. Rev. B
82
,
205323
(
2010
).
45.
D.
Segal
,
A. J.
Millis
, and
D. R.
Reichman
,
Phys. Chem. Chem. Phys.
13
,
14378
(
2011
).
46.
L.
Simine
and
D.
Segal
,
J. Chem. Phys.
138
,
214111
(
2013
).
47.
R. P.
Feynman
,
Rev. Mod. Phys.
20
,
367
(
1948
).
48.
R. P.
Feynman
and
A. R.
Hibbs
,
Quantum Mechanics and Path Integrals
(
McGraw-Hill
,
New York
,
1965
).
49.
R. P.
Feynman
and
J. F. L.
Vernon
,
Ann. Phys.
24
,
118
(
1963
).
50.
P.
Nalbach
and
M.
Thorwart
,
Phys. Rev. B
81
,
054308
(
2010
).
51.
J. V.
Lill
,
G. A.
Parker
, and
J. C.
Light
,
Chem. Phys. Lett.
89
,
483
(
1982
).
52.
J. C.
Light
,
I. P.
Hamilton
, and
J. V.
Lill
,
J. Chem. Phys.
82
,
1400
(
1985
).
53.
R.
Lambert
and
N.
Makri
,
J. Chem. Phys.
137
,
22A552
(
2012
).
54.
R.
Lambert
and
N.
Makri
,
J. Chem. Phys.
137
,
22A553
(
2012
).
55.
T.
Banerjee
and
N.
Makri
,
J. Phys. Chem.
117
,
13357
(
2013
).
56.
N.
Makri
and
K.
Thompson
,
Chem. Phys. Lett.
291
,
101
(
1998
).
57.
K.
Thompson
and
N.
Makri
,
J. Chem. Phys.
110
,
1343
(
1999
).
58.
Q.
Shi
and
E.
Geva
,
J. Chem. Phys.
121
,
3393
(
2004
).
59.
E. J.
Wigner
,
J. Chem. Phys.
5
,
720
(
1937
).
60.
X.
Sun
,
H.
Wang
, and
W. H.
Miller
,
J. Chem. Phys.
109
,
7064
(
1998
).
61.
J. A.
Poulsen
,
G.
Nyman
, and
P. J.
Rossky
,
J. Chem. Phys.
119
(
23
),
12179
(
2003
).
62.
63.
N.
Makri
,
J. Chem. Phys.
141
,
134117
(
2014
).
You do not currently have access to this content.