Hard sphere suspensions are well recognized model systems of statistical physics and soft condensed matter. We here investigate the temporal evolution of the immediate environment of nucleating and growing crystals and/or their global scale distribution using time resolved Small Angle Light Scattering (SALS). Simultaneously performed Bragg scattering measurements provide an accurate temporal gauging of the sequence of events. We apply this approach to studies of re-crystallization in several different shear molten hard sphere and attractive hard sphere samples with the focus being on the diversity of observable signal shapes and their change in time. We demonstrate that depending on the preparation conditions different processes occur on length scales larger than the structural scale, which significantly influence both the crystallization kinetics and the final micro-structure. By careful analysis of the SALS signal evolution and by comparing different suggestions for small angle signal shapes to our data, we can for most cases identify the processes leading to the observed signals. These include form factor scattering from crystals surrounded by depletion zones and structure factor scattering from late stage inter-crystallite ordering. The large variety of different small angle signals thus in principle contains valuable information complementary to that gained from Bragg scattering or microscopy. Our comparison, however, also shows that further refinement and adaptation of the theoretical expressions to the sample specific boundary conditions is desired for a quantitative kinetic analysis of micro-structural evolution.

1.
P. N.
Pusey
and
W.
van Megen
, “
Phase behaviour in concentrated suspensions of nearly hard colloidal spheres
,”
Nature
320
,
340
342
(
1986
).
2.
P.
Bartlett
and
W. v.
Megen
, in
Granular Matter, The Physics of Hard-Sphere Colloids
, edited by
A.
Mehta
(
Springer
,
New York
,
1994
), pp.
195
257
.
3.
W.
van Megen
, “
Crystallization and the glass transition in suspensions of hard colloidal spheres
,”
Transp. Theory Stat. Phys.
24
,
1017
1051
(
1995
).
4.
B. J.
Ackerson
, “
special issue phase transitions in colloidal suspensions
,”
Phase Transitions
21
(
2-4
),
73
249
(
1990
).
5.
T.
Palberg
, “
Crystallization kinetics of repulsive colloidal spheres
,”
J. Phys.: Condens. Matter
11
,
R323
R360
(
1999
).
6.
W. C. K.
Poon
, “
The physics of a model colloid–polymer mixture
,”
J. Phys.: Condens. Matter
14
,
R859
(
2002
).
7.
S.-H.
Chen
,
W.-R.
Chen
, and
F.
Mallemace
, “
The glass to glass transition and its endpoint in a copolymer micellar system
,”
Science
300
,
619
622
(
2003
).
8.
V. J.
Anderson
and
H. N. W.
Lekkerkerker
, “
Insights into phase transition kinetics from colloidal science
,”
Nature
416
,
811
(
2002
).
9.
E.
Bartsch
,
T.
Eckert
,
C.
Pies
, and
H.
Sillescu
, “
The effect of free polymer on the glass transition dynamics of microgel colloids
,”
J. Non-Cryst. Solids
307–310
,
802
(
2002
).
10.
R. P.
Sear
, “
Nucleation: Theory and applications to protein solutions and colloidal suspensions
,”
J. Phys.: Condens. Matter
19
,
033101
(
2007
).
11.
T.
Palberg
, “
Crystallization kinetics of colloidal model suspensions: Recent achievements and new perspectives
,”
J. Phys.: Condens. Matter
26
,
333101
(
2014
).
12.
H. J.
Schöpe
,
G.
Bryant
, and
W.
van Megen
, “
Two step crystallization kinetics in colloidal hard spheres
,”
Phys. Rev. Lett.
96
,
175701
(
2006
).
13.
T.
Schilling
,
H. J.
Schöpe
,
M.
Oettel
,
G.
Opletal
, and
I.
Snook
, “
Precursor-mediated crystallization process in suspensions of hard spheres
,”
Phys. Rev. Lett.
105
,
025701
(
2010
).
14.
T.
Kawasaki
and
H.
Tanaka
, “
Formation of a crystal nucleus from liquid
,”
Proc. Natl. Acad. Sci. U. S. A.
107
,
14036
14041
(
2010
).
15.
J.
Russo
and
H.
Tanaka
, “
The microscopic pathway to crystallization in undercooled fluids
,”
Sci. Rep.
2
,
505
(
2012
).
16.
P.
Tan
,
N.
Xu
, and
L.
Xu
, “
Visualizing kinetic pathways of homogeneous nucleation in colloidal crystallization
,”
Nat. Phys.
10
,
73
79
(
2014
).
17.
K.
Kratzer
and
A.
Arnold
, “
Two-stage crystallization of charged colloids under low supersaturation conditions
,”
Soft Matter
11
,
2174
2182
(
2015
).
18.
H. J.
Schöpe
and
T.
Palberg
, “
Frustration of structural fluctuations upon equilibration of shear melts
,”
J. Non-Cryst. Solids
307-310
,
613
622
(
2002
).
19.
M.
Franke
,
S.
Golde
, and
H. J.
Schöpe
, “
Solidification of a colloidal hard sphere like model system approaching and crossing the glass transition
,”
Soft Matter
10
,
5380
5389
(
2014
).
20.
U.
Gasser
, “
Crystallization in three- and two-dimensional colloidal suspensions
,”
J. Phys.: Condens. Matter
21
,
203101
(
2009
).
21.
N. J.
Lorenz
,
H. J.
Schöpe
,
H.
Reiber
,
T.
Palberg
,
P.
Wette
,
I.
Klassen
,
D.
Holland-Moritz
,
D.
Herlach
, and
T.
Okubo
, “
Phase behaviour of deionized binary mixtures of charged colloidal spheres
,”
J. Phys.: Condens. Matter
21
,
464116
(
2009
).
22.
S. R.
Ganagalla
and
S. N.
Punnathanam
, “
Free energy barriers for homogeneous crystal nucleation in a eutectic system of binary hard spheres
,”
J. Chem. Phys.
138
,
174503
(
2013
).
23.
M.
Leocmach
,
C. P.
Royall
, and
H.
Tanaka
, “
Novel zone formation due to interplay between sedimentation and phase ordering
,”
Europhys. Lett.
89
,
38006
(
2010
).
24.
A.
Kozina
,
P.
Diaz-Leyva
,
C.
Friedrich
, and
E.
Bartsch
, “
Structural and dynamical evolution of colloid-polymer mixtures on crossing glass and gel transition as seen by optical microrheology and mechanical bulk rheology
,”
Soft Matter
8
,
627
630
(
2012
).
25.
J.
Nozawa
,
S.
Uda
,
Y.
Naradate
,
H.
Koizumi
,
K.
Fujiwara
,
A.
Toyotama
, and
J.
Yamanaka
, “
Impurity partitioning during colloidal crystallization
,”
J. Phys. Chem. B
117
,
5289
5295
(
2013
).
26.
A.
Kozina
,
P.
Diaz-Leyva
,
T.
Palberg
, and
E.
Bartsch
, “
Crystallization kinetics of colloidal binary mixtures with depletion attraction
,”
Soft Matter
10
,
9523
(
2014
).
27.
A.
Engelbrecht
and
H. J.
Schöpe
, “
Drastic variation of the microstructure formation in a charged sphere colloidal model system by adding merely tiny amounts of larger particles
,”
Cryst. Growth Des.
10
,
2258
2266
(
2010
).
28.
M.
Franke
,
A.
Lederer
, and
H. J.
Schöpe
, “
Heterogeneous and homogeneous crystal nucleation in colloidal hard-sphere like microgels at low metastabilities
,”
Soft Matter
7
,
11267
11274
(
2011
).
29.
K.
Sandomirski
,
S.
Walta
,
J.
Dubbert
,
E.
Allahyarov
,
A. B.
Schofield
,
H.
Löwen
,
W.
Richtering
, and
S. U.
Egelhaaf
, “
Heterogeneous crystallization of hard and soft spheres near flat and curved walls
,”
Eur. Phys. J.: Spec. Top.
223
,
439
454
(
2014
).
30.
T.
Okubo
, “
Giant colloidal single crystals of polystyrene and silica spheres in de-ionized suspensions
,”
Langmuir
10
,
1695
1702
(
1994
).
31.
T.
Palberg
,
M. R.
Maaroufi
,
A.
Stipp
, and
H. J.
Schöpe
, “
Micro-structure evolution of wall based crystals after casting of model suspensions as obtained from Bragg microscopy
,”
J. Chem. Phys.
137
,
094906
(
2012
).
32.
M.
Shinohara
,
A.
Toyotama
,
M.
Suzuki
,
Y.
Sugao
,
T.
Okuzono
,
F.
Uchida
, and
J.
Yamanaka
, “
Recrystallization and zone melting of charged colloids by thermally induced crystallization
,”
Langmuir
29
,
9668
9676
(
2013
).
33.
K.
Schätzel
and
B. J.
Ackerson
, “
Observation of density fluctuations during crystallization
,”
Phys. Rev. Lett.
68
,
337
(
1992
).
34.
M. D.
Elliot
and
W. C. K.
Poon
, “
Conventional optical microscopy of colloidal suspensions
,”
Adv. Colloid Interface Sci.
92
,
133
194
(
2001
).
35.
K.
Schätzel
and
B. J.
Ackerson
, “
Crystallization of hard sphere colloids
,”
Phys. Scr.
T49
,
70
73
(
1993
).
36.
K.
Schätzel
and
B. J.
Ackerson
, “
Density fluctuations during crystallization of colloids
,”
Phys. Rev. E
48
,
3766
(
1993
).
37.
B. J.
Ackerson
and
K.
Schätzel
, “
Classical growth of hard-sphere colloidal crystals
,”
Phys. Rev. E
52
,
6448
6460
(
1995
).
38.
S.
Derber
,
T.
Palberg
,
K.
Schätzel
, and
J.
Vogel
, “
Growth of a colloidal crystallite of hard spheres
,”
Physica A
235
,
204
215
(
1997
).
39.
Y.
He
,
B. J.
Ackerson
,
W.
van Megen
,
S. M.
Underwood
, and
K.
Schätzel
, “
Dynamics of crystallization in hard-sphere suspensions
,”
Phys. Rev. E
54
,
5
(
1996
).
40.
Y.
He
and
B. J.
Ackerson
, “
Crystallization of hard spheres and turbidity
,”
Physica A
235
,
194
203
(
1997
).
41.
A.
Heymann
,
A.
Stipp
,
C.
Sinn
, and
T.
Palberg
, “
Observation of oriented close-packed lattice planes in polycrystalline hard-sphere solids
,”
J. Colloid Interface Sci.
207
,
119
127
(
1998
).
42.
C.
Sinn
,
A.
Heymann
,
A.
Stipp
, and
T.
Palberg
, “
Solidification kinetics of hard-sphere colloidal suspensions
,”
Prog. Colloid Polym. Sci.
118
,
266
275
(
2001
).
43.
T.
Palberg
,
A.
Stipp
, and
E.
Bartsch
, “
Unusual crystallization kinetics in a hard sphere colloid-polymer mixture
,”
Phys. Rev. Lett.
102
,
038302
(
2009
).
44.
A.
Stipp
,
H.-J.
Schöpe
,
T.
Palberg
,
T.
Eckert
,
R.
Biehl
, and
E.
Bartsch
, “
Optical experiments on a crystallizing hard-sphere–polymer mixture at coexistence
,”
Phys. Rev. E
81
,
051401
(
2010
).
45.
D.
Ashnagi
,
M.
Carpineti
,
M.
Giglio
, and
A.
Vailati
, “
Small angle light scattering studies concerning aggregation processes
,”
Curr. Opin. Colloid Interface Sci.
2
,
246
250
(
1997
).
46.
M.
Carpineti
and
M.
Giglio
, “
Spinodal-type dynamics in fractal aggregation of colloidal clusters
,”
Phys. Rev. Lett.
68
,
3327
3330
(
1992
).
47.
M.
Carpineti
,
M.
Giglio
, and
V.
Degiorgio
, “
Mass conservation and anticorrelation effects in the colloidal aggregation of dense solutions
,”
Phys. Rev. E
51
,
590
596
(
1995
).
48.
P. W.
Rouw
,
A. T. J. M.
Woutersen
,
B. J.
Ackerson
, and
C. G.
De Kruif
, “
Adhesive hard sphere dispersions: V. Observation of spinodal decomposition in a colloidal dispersion
,”
Physica A
156
,
876
(
1989
).
49.
A. E.
Bailey
 et al, “
Spinodal decomposition in a model colloid-polymer mixture in microgravity
,”
Phys. Rev. Lett.
99
,
205701
(
2007
).
50.
N. A. M.
Verhaegh
,
J. S.
van Duijneveldt
,
J. K. G.
Dhont
, and
H. N. W.
Lekkerkerker
, “
Fluid-fluid phase separation in colloid-polymer mixtures studied with small angle light scattering and light microscopy
,”
Physica A
230
(
3–4
),
409
436
(
1996
).
51.
H.
Furukawa
, “
Dynamic scaling theory for phase-separating unmixing mixtures: Growth rates for droplets and scaling properties of autocorrelation functions
,”
Physica A
123
,
497
515
(
1984
).
52.
I. M.
Lifshitz
and
V. V.
Slyozov
, “
The kinetics of precipitation from supersaturated solid solutions
,”
J. Phys. Chem. Solids
19
,
35
(
1961
).
53.
J. D.
Gunton
,
M. S.
Miguel
, and
P. S.
Sahni
, in
Phase Transitions and Critical Phenomena
, edited by
C.
Domb
and
J. L.
Lebowitz
(
Academic
,
New York
,
1983
), Vol.
8
.
54.
A. J.
Bray
, “
Theory of phase ordering kinetics
,”
Adv. Phys.
43
,
357
(
1994
).
55.
K.
Binder
, “
Theory of first-order phase transitions
,”
Rep. Prog. Phys.
50
,
783
(
1987
).
56.
P. J.
Lu
,
E.
Zaccarelli
,
F.
Ciulla
,
A. B.
Schofield
,
F.
Sciortino
, and
D. A.
Weitz
, “
Gelation of particles with short-range attraction
,”
Nature
453
,
499
503
(
2008
).
57.
A.
Weiss
,
K. D.
Hörner
, and
M.
Ballauff
, “
Analysis of attractive interactions between latex particles in the presence of nonadsorbing polymers by turbidimetry
,”
J. Colloid Interface Sci.
213
,
417
425
(
1999
).
58.
C. M.
Sorensen
, “
Light scattering by fractal aggregates: A review
,”
Aerosol Sci. Technol.
35
,
648
687
(
2001
).
59.
A.
Heymann
,
A.
Stipp
, and
K.
Schätzel
, “
Scaling in colloidal crystallization
,”
Il Nouvo Cimento D
16
,
1149
1157
(
1994
).
60.
V. C.
Martelozzo
,
A. B.
Schofield
,
W. C. K.
Poon
, and
P. N.
Pusey
, “
Structural aging of crystals of hard-sphere colloids
,”
Phys. Rev. E
66
,
021408
(
2002
).
61.
T.
Zykova-Timan
,
J.
Horbach
, and
K.
Binder
, “
Monte Carlo simulations of the solid-liquid transition in hard spheres and colloid-polymer mixtures
,”
J. Chem. Phys.
133
,
014705
(
2010
).
62.
P. G.
Bolhuis
and
D. A.
Kofke
, “
Monte Carlo study of freezing of polydisperse hard spheres
,”
Phys. Rev. E
54
,
634
(
1996
).
63.
M.
Fasolo
and
P.
Sollich
, “
Fractionation effects in phase equilibria of polydisperse hard-sphere colloids
,”
Phys. Rev. E
70
,
041410
(
2004
).
64.
H. N. W.
Lekkerkerker
,
W. C. K.
Poon
,
P. N.
Pusey
,
A.
Stroobants
, and
P. B.
Warren
, “
Phase behaviour of colloid + polymer mixtures
,”
Europhys. Lett.
20
,
559
(
1992
).
65.
M.
Fasolo
and
P.
Sollich
, “
Effects of colloid polydispersity on the phase behavior of colloid-polymer mixtures
,”
J. Chem. Phys.
122
,
07904
(
2005
).
66.
R.
Beyer
,
S.
Iacopini
,
T.
Palberg
, and
H. J.
Schöpe
, “
Polymer induced changes of the crystallization scenario in suspensions of hard sphere like microgel particles
,”
J. Chem. Phys.
136
,
234906
(
2012
).
67.
M.
Dijkstra
,
J. M.
Brader
, and
R.
Evans
, “
Phase behaviour and structure of model colloid–polymer mixtures
,”
J. Phys.: Condens. Matter
11
,
10079
10106
(
1999
).
68.
B. J.
Ackerson
,
S. E.
Paulin
,
B.
Johnson
,
W.
van Megen
, and
S.
Underwood
, “
Crystallization by settling in suspensions of hard spheres
,”
Phys. Rev. E
59
,
6903
(
1999
).
69.
Y.
He
,
B.
Olivier
, and
B. J.
Ackerson
, “
Morphology of crystals made of hard spheres
,”
Langmuir
13
,
1408
1412
(
1997
).
70.
W. B.
Russel
,
P. M.
Chaikin
,
J.
Zhu
,
W. V.
Meyer
, and
R.
Rogers
, “
Dendritic growth of hard sphere crystals
,”
Langmuir
13
,
3871
(
1997
).
71.
W.
Poon
,
F.
Renth
,
R. M. L.
Evans
,
D. J.
Fairhurst
,
M. E.
Cates
, and
P. N.
Pusey
, “
Colloid-polymer mixtures at triple Coexistence: Kinetic maps from free-energy landscapes
,”
Phys. Rev. Lett.
83
,
1239
(
1999
).
72.
S.
Buzzaccaro
,
R.
Rusconi
, and
R.
Piazza
, “
“Sticky” hard Spheres: Equation of state, phase diagram, and metastable gels
,”
Phys. Rev. Lett.
99
,
098301
(
2007
).
73.
N.
Lorenz
,
H. J.
Schöpe
, and
T.
Palberg
, “
Phase behavior of a de-ionized binary mixture of charged spheres in the presence of gravity
,”
J. Chem. Phys.
131
,
134501
(
2009
).
74.
J.
Russo
,
A. C.
Maggs
,
D.
Bonn
, and
H.
Tanaka
, “
The interplay of sedimentation and crystallization in hard-sphere suspensions
,”
Soft Matter
9
,
7369
7383
(
2013
).
75.
T.
Eckert
and
E.
Bartsch
, “
Re-entrant glass transition in a colloid-polymer mixture with depletion attractions
,”
Phys. Rev. Lett.
89
,
125701
(
2002
).
76.
T.
Eckert
and
E.
Bartsch
, “
Glass transition dynamics of hard sphere like microgel colloids with short-ranged attractions
,”
J. Phys.: Condens. Matter
16
,
S4937
(
2004
).
77.
H.
Senff
and
W.
Richtering
, “
Temperature sensitive microgel suspensions: Colloidal phase behavior and rheology of soft spheres
,”
J. Chem. Phys.
111
,
1705
(
1999
).
78.
M.
Wiemann
, Ph.D. thesis,
Albert-Ludwigs-University
, Freiburg,
2013
.
79.
A.
Kozina
, Ph.D. thesis,
Albert-Ludwigs-University
, Freiburg,
2009
.
80.
S. E.
Paulin
and
B. J.
Ackerson
, “
Observation of a phase transition in the sedimentation velocity of hard spheres
,”
Phys. Rev. Lett.
64
,
2663
2666
(
1990
);
[PubMed]
S. E.
Paulin
and
B. J.
Ackerson
, “
Erratum
,”
ibid.
65
,
668
(
1990
).
81.
M.
Fasolo
and
P.
Sollich
, “
Equilibrium phase behaviour of polydisperse hard spheres
,”
Phys. Rev. Lett.
91
,
068301
(
2003
).
82.
J. L.
Harland
and
W.
van Megen
, “
Crystallization kinetics of suspensions of hard colloidal spheres
,”
Phys. Rev. E
55
,
3054
3067
(
1997
).
83.
L.
Fetters
,
N.
Hadjichristidis
,
J.
Lindner
, and
J.
Mays
, “
Molecular weight dependence of hydrodynamic and thermodynamic properties for Well - Defined linear polymers in solution
,”
J. Phys. Chem. Ref. Data
23
,
619
(
1994
).
84.
P. S.
Francis
,
S.
Martin
,
G.
Bryant
,
W.
van Megen
, and
P. A.
Wilksch
, “
A Bragg scattering spectrometer for studying crystallization of colloidal suspensions
,”
Rev. Sci. Instrum.
73
,
3878
3884
(
2002
).
85.
R. J.
Spry
and
D. J.
Kosan
, “
Theoretical analysis of the crystalline colloidal array filter
,”
Appl. Spectrosc.
40
,
782
784
(
1986
).
86.
F.
Ferri
, “
Use of a charge coupled device camera for low-angle elastic light scattering
,”
Rev. Sci. Instrum.
68
,
2265
(
1997
).
87.
P. N.
Pusey
,
W.
van Megen
,
P.
Bartlett
,
B. J.
Ackerson
,
J. G.
Rarity
, and
S. M.
Underwood
, “
Structure of crystals of hard colloidal spheres
,”
Phys. Rev. Lett.
63
,
2753
(
1989
).
88.
S.
Iacopini
,
T.
Palberg
, and
H. J.
Schöpe
, “
Crystallization kinetics of polydisperse hard-sphere-like microgel colloids: Ripening dominated crystal growth above melting
,”
J. Chem. Phys.
130
,
084502
(
2009
).
89.
Z.
Cheng
,
P. M.
Chaikin
,
J. X.
Zhu
,
W. B.
Russel
, and
W. V.
Meyer
, “
Crystallization kinetics of hard spheres in microgravity in the coexistence regime: Interactions between growing crystallites
,”
Phys. Rev. Lett.
88
,
015501
(
2001
).
90.
B. J.
Ackerson
and
K.
Schätzel
, in
Complex Fluids
, edited by
L.
Garrido
(
Springer
,
Heidelberg
,
1992
), pp.
15
32
.
91.
J. K. G.
Dhont
,
An Introduction to The Dynamics of Colloids
(
Elsevier
,
Amsterdam
,
1996
).
92.
M.
Born
,
Optik
(
Springer
,
Berlin
,
1972
).
93.
J. L.
Langford
and
A. J. C.
Wilson
, “
Scherrer after sixty years: A survey and some new results in the determination of crystallite size
,”
J. Appl. Cryst.
11
,
102
113
(
1978
).
94.
W.
Drenckhan
and
D.
Langevin
, “
Monodisperse foams in one to three dimensions
,”
Curr. Opin. Colloid Interface Sci.
15
,
341
358
(
2010
).
95.
P. J.
Lu
,
J. C.
Conrad
,
H. M.
Wyss
,
A. B.
Schofield
, and
D. A.
Weitz
, “
Fluids of clusters in attractive colloids
,”
Phys. Rev. Lett.
96
,
028306
(
2006
).
96.
See http://amiller.nmsu.edu/mietab.html (March 2013) for the documentation of the software.
You do not currently have access to this content.