Water is a ubiquitous liquid that displays a wide range of anomalous properties and has a delicate structure that challenges experiment and simulation alike. The various intermolecular interactions that play an important role, such as repulsion, polarization, hydrogen bonding, and van der Waals interactions, are often difficult to reproduce faithfully in atomistic models. Here, electronic structure theories including all these interactions at equal footing, which requires the inclusion of non-local electron correlation, are used to describe structure and dynamics of bulk liquid water. Isobaric-isothermal (NpT) ensemble simulations based on the Random Phase Approximation (RPA) yield excellent density (0.994 g/ml) and fair radial distribution functions, while various other density functional approximations produce scattered results (0.8-1.2 g/ml). Molecular dynamics simulation in the microcanonical (NVE) ensemble based on Møller-Plesset perturbation theory (MP2) yields dynamical properties in the condensed phase, namely, the infrared spectrum and diffusion constant. At the MP2 and RPA levels of theory, ice is correctly predicted to float on water, resolving one of the anomalies as resulting from a delicate balance between van der Waals and hydrogen bonding interactions. For several properties, obtaining quantitative agreement with experiment requires correction for nuclear quantum effects (NQEs), highlighting their importance, for structure, dynamics, and electronic properties. A computed NQE shift of 0.6 eV for the band gap and absorption spectrum illustrates the latter. Giving access to both structure and dynamics of condensed phase systems, non-local electron correlation will increasingly be used to study systems where weak interactions are of paramount importance.

1.
J. R.
Errington
and
P. G.
Debenedetti
,
Nature
409
,
318
(
2001
).
2.
P.
Wernet
,
D.
Nordlund
,
U.
Bergmann
,
M.
Cavalleri
,
M.
Odelius
,
H.
Ogasawara
,
L. A.
Näslund
,
T. K.
Hirsch
,
L.
Ojamäe
,
P.
Glatzel
,
L. G. M.
Pettersson
, and
A.
Nilsson
,
Science
304
,
995
(
2004
).
3.
A. K.
Soper
,
ISRN Phys. Chem.
2013
,
279463
(
2013
).
4.
A.
Nilsson
and
L.
Pettersson
,
Chem. Phys.
389
,
1
(
2011
).
5.
A.
Rahman
and
F. H.
Stillinger
,
J. Chem. Phys.
55
,
3336
(
1971
).
6.
E.
Whalley
,
J. Chem. Phys.
81
,
4087
(
1984
).
7.
G. A.
Tribello
and
B.
Slater
,
Chem. Phys. Lett.
425
,
246
(
2006
).
8.
W. L.
Jorgensen
,
J.
Chandrasekhar
,
J. D.
Madura
,
R. W.
Impey
, and
M. L.
Klein
,
J. Chem. Phys.
79
,
926
(
1983
).
10.
W. L.
Jorgensen
and
J.
Tirado-Rives
,
Proc. Natl. Acad. Sci. U. S. A.
102
,
6665
(
2005
).
11.
R.
Bukowski
,
K.
Szalewicz
,
G. C.
Groenenboom
, and
A.
van der Avoird
,
Science
315
,
1249
(
2007
).
12.
A. G.
Donchev
,
N. G.
Galkin
,
A. A.
Illarionov
,
O. V.
Khoruzhii
,
M. A.
Olevanov
,
V. D.
Ozrin
,
M. V.
Subbotin
, and
V. I.
Tarasov
,
Proc. Natl. Acad. Sci. U. S. A.
103
,
8613
(
2006
).
13.
M. W.
Mahoney
and
W. L.
Jorgensen
,
J. Chem. Phys.
112
,
8910
(
2000
).
14.
S. W.
Rick
,
S. J.
Stuart
, and
B. J.
Berne
,
J. Chem. Phys.
101
,
6141
(
1994
).
15.
S.
Izvekov
,
M.
Parrinello
,
C. J.
Burnham
, and
G. A.
Voth
,
J. Chem. Phys.
120
,
10896
(
2004
).
16.
S. S.
Xantheas
,
C. J.
Burnham
, and
R. J.
Harrison
,
J. Chem. Phys.
116
,
1493
(
2002
).
17.
P.
Paricaud
,
M.
Predota
,
A. A.
Chialvo
, and
P. T.
Cummings
,
J. Chem. Phys.
122
,
244511
(
2005
).
18.
B.
Chen
,
J.
Xing
, and
J. I.
Siepmann
,
J. Phys. Chem. B
104
,
2391
(
2000
).
19.
T. M.
Truskett
and
K. A.
Dill
,
J. Phys. Chem. B
106
,
11829
(
2002
).
20.
A.
Wallqvist
and
R. D.
Mountain
,
Rev. Comput. Chem.
13
,
183
(
1999
).
21.
G. R.
Medders
,
V.
Babin
, and
F.
Paesani
,
J. Chem. Theory Comput.
10
,
2906
(
2014
).
22.
R.
Kumar
,
F.-F.
Wang
,
G. R.
Jenness
, and
K. D.
Jordan
,
J. Chem. Phys.
132
,
014309
(
2010
).
23.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
B864
(
1964
).
24.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
25.
K.
Laasonen
,
M.
Sprik
,
M.
Parrinello
, and
R.
Car
,
J. Chem. Phys.
99
,
9080
(
1993
).
26.
P. L.
Silvestrelli
and
M.
Parrinello
,
J. Chem. Phys.
111
,
3572
(
1999
).
27.
S.
Izvekov
and
G. A.
Voth
,
J. Chem. Phys.
116
,
10372
(
2002
).
28.
J. C.
Grossman
,
E.
Schwegler
,
E. W.
Draeger
,
F.
Gygi
, and
G.
Galli
,
J. Chem. Phys.
120
,
300
(
2004
).
29.
T. D.
Kühne
,
M.
Krack
, and
M.
Parrinello
,
J. Chem. Theory Comput.
5
,
235
(
2009
).
30.
I.-C.
Lin
,
A. P.
Seitsonen
,
I.
Tavernelli
, and
U.
Rothlisberger
,
J. Chem. Theory Comput.
8
,
3902
(
2012
).
31.
D.
Asthagiri
,
L.
Pratt
, and
J.
Kress
,
Phys. Rev. E
68
,
041505
(
2003
).
32.
E.
Schwegler
,
J. C.
Grossman
,
F.
Gygi
, and
G.
Galli
,
J. Chem. Phys.
121
,
5400
(
2004
).
33.
P. H.-L.
Sit
and
N.
Marzari
,
J. Chem. Phys.
122
,
204510
(
2005
).
34.
R.
Jonchiere
,
A. P.
Seitsonen
,
G.
Ferlat
,
A. M.
Saitta
, and
R.
Vuilleumier
,
J. Chem. Phys.
135
,
154503
(
2011
).
35.
J.
VandeVondele
,
F.
Mohamed
,
M.
Krack
,
J.
Hutter
,
M.
Sprik
, and
M.
Parrinello
,
J. Chem. Phys.
122
,
014515
(
2005
).
36.
H.-S.
Lee
and
M. E.
Tuckerman
,
J. Chem. Phys.
125
,
154507
(
2006
).
37.
H.-S.
Lee
and
M. E.
Tuckerman
,
J. Chem. Phys.
126
,
164501
(
2007
).
38.
Z.
Ma
,
Y.
Zhang
, and
M. E.
Tuckerman
,
J. Chem. Phys.
137
,
044506
(
2012
).
39.
M. V.
Fernández-Serra
and
E.
Artacho
,
J. Chem. Phys.
121
,
11136
(
2004
).
40.
J.
Schmidt
,
J.
VandeVondele
,
I.-F. W.
Kuo
,
D.
Sebastiani
,
J. I.
Siepmann
,
J.
Hutter
, and
C. J.
Mundy
,
J. Phys. Chem. B
113
,
11959
(
2009
).
41.
M. J.
McGrath
,
J. I.
Siepmann
,
I.-F. W.
Kuo
,
C. J.
Mundy
,
J.
VandeVondele
,
J.
Hutter
,
F.
Mohamed
, and
M.
Krack
,
ChemPhysChem
6
,
1894
(
2005
).
42.
J.
Wang
,
G.
Román-Pérez
,
J. M.
Soler
,
E.
Artacho
, and
M.-V.
Fernández-Serra
,
J. Chem. Phys.
134
,
024516
(
2011
).
43.
M.
Del Ben
,
M.
Schönherr
,
J.
Hutter
, and
J.
VandeVondele
,
J. Phys. Chem. Lett.
4
,
3753
(
2013
).
44.
C.
Adriaanse
,
J.
Cheng
,
V.
Chau
,
M.
Sulpizi
,
J.
VandeVondele
, and
M.
Sprik
,
J. Phys. Chem. Lett.
3
,
3411
(
2012
).
45.
M.
Schoenherr
,
B.
Slater
,
J.
Hutter
, and
J.
VandeVondele
,
J. Phys. Chem. B
118
,
590
(
2014
).
46.
J. P.
Perdew
,
A.
Ruzsinszky
,
J.
Tao
,
V. N.
Staroverov
,
G. E.
Scuseria
, and
G. I.
Csonka
,
J. Chem. Phys.
123
,
062201
(
2005
).
47.
T.
Todorova
,
A.
Seitsonen
,
J.
Hutter
,
I.
Kuo
, and
C.
Mundy
,
J. Phys. Chem. B
110
,
3685
(
2006
).
48.
M.
Guidon
,
F.
Schiffmann
,
J.
Hutter
, and
J.
VandeVondele
,
J. Chem. Phys.
128
,
214104
(
2008
).
49.
M.
Guidon
,
J.
Hutter
, and
J.
VandeVondele
,
J. Chem. Theory Comput.
6
,
2348
(
2010
).
50.
C.
Zhang
,
D.
Donadio
,
F.
Gygi
, and
G.
Galli
,
J. Chem. Theory Comput.
7
,
1443
(
2011
).
51.
R. A.
DiStasio
,
B.
Santra
,
Z.
Li
,
X.
Wu
, and
R.
Car
,
J. Chem. Phys.
141
,
084502
(
2014
).
52.
D. C.
Langreth
and
J. P.
Perdew
,
Phys. Rev. B
15
,
2884
(
1977
).
53.
D.
Langreth
and
J.
Perdew
,
Solid State Commun.
17
,
1425
(
1975
).
54.
O.
Gunnarsson
and
B. I.
Lundqvist
,
Phys. Rev. B
13
,
4274
(
1976
).
55.
M.
Fuchs
and
X.
Gonze
,
Phys. Rev. B
65
,
235109
(
2002
).
56.
F.
Furche
and
T. V.
Voorhis
,
J. Chem. Phys.
122
,
164106
(
2005
).
57.
A.
Heßelmann
and
A.
Görling
,
Mol. Phys.
109
,
2473
(
2011
).
58.
H.
Eshuis
,
J.
Bates
, and
F.
Furche
,
Theor. Chem. Acc.
131
,
1084
(
2012
).
59.
J.
Paier
,
X.
Ren
,
P.
Rinke
,
G. E.
Scuseria
,
A.
Grüneis
,
G.
Kresse
, and
M.
Scheffler
,
New J. Phys.
14
,
043002
(
2012
).
60.
X.
Ren
,
P.
Rinke
,
C.
Joas
, and
M.
Scheffler
,
J. Mater. Sci.
47
,
7447
(
2012
).
61.
C.
Møller
and
M. S.
Plesset
,
Phys. Rev.
46
,
618
(
1934
).
62.
A.
Szabo
and
N. S.
Ostlund
,
Modern Quantum Chemistry
(
McGraw Hill
,
New York
,
1982
).
63.
A.
Görling
and
M.
Levy
,
Phys. Rev. B
47
,
13105
(
1993
).
64.
R. J.
Bartlett
,
I.
Grabowski
,
S.
Hirata
, and
S.
Ivanov
,
J. Chem. Phys.
122
,
034104
(
2005
).
65.
S.
Grimme
,
J. Chem. Phys.
124
,
034108
(
2006
).
66.
T.
Schwabe
and
S.
Grimme
,
Phys. Chem. Chem. Phys.
8
,
4398
(
2006
).
67.
L.
Goerigk
and
S.
Grimme
,
J. Chem. Theory Comput.
7
,
291
(
2011
).
68.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
,
J. Chem. Phys.
132
,
154104
(
2010
).
69.
M.
Dion
,
H.
Rydberg
,
E.
Schröder
,
D. C.
Langreth
, and
B. I.
Lundqvist
,
Phys. Rev. Lett.
92
,
246401
(
2004
).
70.
M.
Dion
,
H.
Rydberg
,
E.
Schröder
,
D. C.
Langreth
, and
B. I.
Lundqvist
,
Phys. Rev. Lett.
95
,
109902
(
2005
).
71.
R.
Sabatini
,
T.
Gorni
, and
S.
de Gironcoli
,
Phys. Rev. B
87
,
041108
(
2013
).
72.
O. A.
Vydrov
and
T.
Van Voorhis
,
J. Chem. Phys.
133
,
244103
(
2010
).
73.
A.
Bankura
,
A.
Karmakar
,
V.
Carnevale
,
A.
Chandra
, and
M. L.
Klein
,
J. Phys. Chem. C
118
,
29401
(
2014
).
74.
G.
Miceli
,
S.
de Gironcoli
, and
A.
Pasquarello
,
J. Chem. Phys.
142
,
034501
(
2015
).
75.
I.-F. W.
Kuo
,
C. J.
Mundy
,
M. J.
McGrath
,
J. I.
Siepmann
,
J.
VandeVondele
,
M.
Sprik
,
J.
Hutter
,
B.
Chen
,
M. L.
Klein
,
F.
Mohamed
,
M.
Krack
, and
M.
Parrinello
,
J. Phys. Chem. B
108
,
12990
(
2004
).
76.
M. J.
McGrath
,
J. I.
Siepmann
,
I.-F. W.
Kuo
, and
C. J.
Mundy
,
Mol. Phys.
104
,
3619
(
2006
).
77.
R.
Iftimie
,
D.
Salahub
,
D.
Wei
, and
J.
Schofield
,
J. Chem. Phys.
113
,
4852
(
2000
).
78.
B.
Hetenyi
,
K.
Bernacki
, and
B. J.
Berne
,
J. Chem. Phys.
117
,
8203
(
2002
).
79.
L. D.
Gelb
,
J. Chem. Phys.
118
,
7747
(
2003
).
80.
S.
Duane
,
A.
Kennedy
,
B. J.
Pendleton
, and
D.
Roweth
,
Phys. Lett. B
195
,
216
(
1987
).
81.
B.
Mehlig
,
D. W.
Heermann
, and
B. M.
Forrest
,
Phys. Rev. B
45
,
679
(
1992
).
82.
M.
Del Ben
,
M.
Schönherr
,
J.
Hutter
, and
J.
VandeVondele
,
J. Phys. Chem. Lett.
5
,
3066
(
2014
).
83.
S.
Hirata
,
X.
He
,
M. R.
Hermes
, and
S. Y.
Willow
,
J. Phys. Chem. A
118
,
655
(
2014
).
84.
S.
Saebø
and
P.
Pulay
,
Annu. Rev. Phys. Chem.
44
,
213
(
1993
).
85.
P.
Pulay
and
S.
Saebø
,
Theor. Chim. Acta
69
,
357
(
1986
).
86.
G.
Rauhut
,
P.
Pulay
, and
H.-J.
Werner
,
J. Comput. Chem.
19
,
1241
(
1998
).
87.
M.
Schütz
,
G.
Hetzer
, and
H.-J.
Werner
,
J. Chem. Phys.
111
,
5691
(
1999
).
88.
G.
Hetzer
,
M.
Schütz
,
H.
Stoll
, and
H.-J.
Werner
,
J. Chem. Phys.
113
,
9443
(
2000
).
89.
S.
Saebø
and
P.
Pulay
,
J. Chem. Phys.
115
,
3975
(
2001
).
90.
C.
Pisani
,
M.
Busso
,
G.
Capecchi
,
S.
Casassa
,
R.
Dovesi
,
L.
Maschio
,
C.
Zicovich-Wilson
, and
M.
Schütz
,
J. Chem. Phys.
122
,
094113
(
2005
).
91.
C.
Pisani
,
L.
Maschio
,
S.
Casassa
,
M.
Halo
,
M.
Schütz
, and
D.
Usvyat
,
J. Comput. Chem.
29
,
2113
(
2008
).
92.
P.
Maslen
,
Chem. Phys. Lett.
283
,
102
(
1998
).
93.
P. E.
Maslen
and
M.
Head-Gordon
,
J. Chem. Phys.
109
,
7093
(
1998
).
94.
J. L.
Whitten
,
J. Chem. Phys.
58
,
4496
(
1973
).
95.
B. I.
Dunlap
,
J. W. D.
Connolly
, and
J. R.
Sabin
,
J. Chem. Phys.
71
,
3396
(
1979
).
96.
O.
Vahtras
,
J.
Almlöf
, and
M.
Feyereisen
,
Chem. Phys. Lett.
213
,
514
(
1993
).
97.
M.
Feyereisen
,
G.
Fitzgerald
, and
A.
Komornicki
,
Chem. Phys. Lett.
208
,
359
(
1993
).
98.
W.
Klopper
,
F. R.
Manby
,
S.
Ten-No
, and
E. F.
Valeev
,
Int. Rev. Phys. Chem.
25
,
427
(
2006
).
99.
M.
Del Ben
,
J.
Hutter
, and
J.
VandeVondele
,
J. Chem. Phys.
143
,
102803
(
2015
).
100.
F.
Weigend
and
M.
Häser
,
Theor. Chem. Acc.
97
,
331
(
1997
).
101.
R. A.
Distasio
,
R. P.
Steele
,
Y. M.
Rhee
,
Y.
Shao
, and
M.
Head-Gordon
,
J. Comput. Chem.
28
,
839
(
2007
).
102.
C.
Hättig
,
A.
Hellweg
, and
A.
Köhn
,
Phys. Chem. Chem. Phys.
8
,
1159
(
2006
).
103.
C. M.
Aikens
,
S. P.
Webb
,
R. L.
Bell
,
G. D.
Fletcher
,
M. W.
Schmidt
, and
M. S.
Gordon
,
Theor. Chem. Acc.
110
,
233
(
2003
).
104.
J. P.
Perdew
,
J. A.
Chevary
,
S. H.
Vosko
,
K. A.
Jackson
,
M. R.
Pederson
,
D. J.
Singh
, and
C.
Fiolhais
,
Phys. Rev. B
46
,
6671
(
1992
).
105.
J. P.
Perdew
,
J. A.
Chevary
,
S. H.
Vosko
,
K. A.
Jackson
,
M. R.
Pederson
,
D. J.
Singh
, and
C.
Fiolhais
,
Phys. Rev. B
48
,
4978
(
1993
).
106.
A. D.
Becke
,
J. Chem. Phys.
104
,
1040
(
1996
).
107.
S.
Grimme
,
J. Chem. Phys.
118
,
9095
(
2003
).
108.
Y.
Jung
,
R. C.
Lochan
,
A. D.
Dutoi
, and
M.
Head-Gordon
,
J. Chem. Phys.
121
,
9793
(
2004
).
109.
J.
Almlöf
,
Chem. Phys. Lett.
181
,
319
(
1991
).
110.
M.
Häser
and
J.
Almlöf
,
J. Chem. Phys.
96
,
489
(
1992
).
111.
M.
Del Ben
,
J.
Hutter
, and
J.
VandeVondele
,
J. Chem. Theory Comput.
9
,
2654
(
2013
).
112.
113.
H.
Eshuis
,
J.
Yarkony
, and
F.
Furche
,
J. Chem. Phys.
132
,
234114
(
2010
).
114.
A.
Takatsuka
,
S.
Ten-no
, and
W.
Hackbusch
,
J. Chem. Phys.
129
,
044112
(
2008
).
115.
M.
Del Ben
,
O.
Schütt
,
T.
Wentz
,
P.
Messmer
,
J.
Hutter
, and
J.
VandeVondele
,
Comput. Phys. Commun.
187
,
120
(
2015
).
116.
See http://www.cp2k.org/ for the CP2K developers group, 2014.
117.
G.
Lippert
,
J.
Hutter
, and
M.
Parrinello
,
Mol. Phys.
92
,
477
(
1997
).
118.
J.
VandeVondele
,
M.
Krack
,
F.
Mohamed
,
M.
Parrinello
,
T.
Chassaing
, and
J.
Hutter
,
Comput. Phys. Commun.
167
,
103
(
2005
).
119.
T. H.
Dunning
,
J. Chem. Phys.
90
,
1007
(
1989
).
120.
D. E.
Woon
and
T. H.
Dunning
,
J. Chem. Phys.
98
,
1358
(
1993
).
121.
M.
Del Ben
,
J.
Hutter
, and
J.
VandeVondele
,
J. Chem. Theory Comput.
8
,
4177
(
2012
).
122.
S.
Goedecker
,
M.
Teter
, and
J.
Hutter
,
Phys. Rev. B
54
,
1703
(
1996
).
123.
M.
Guidon
,
J.
Hutter
, and
J.
VandeVondele
,
J. Chem. Theory Comput.
5
,
3010
(
2009
).
124.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
125.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
).
126.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
127.
E. E.
Dahlke
and
D. G.
Truhlar
,
J. Phys. Chem. B
109
,
15677
(
2005
).
128.
C.
Adamo
and
V.
Barone
,
J. Chem. Phys.
110
,
6158
(
1999
).
129.
A.
Halkier
,
T.
Helgaker
,
P.
Jørgensen
,
W.
Klopper
,
H.
Koch
,
J.
Olsen
, and
A. K.
Wilson
,
Chem. Phys. Lett.
286
,
243
(
1998
).
130.
H.
Eshuis
and
F.
Furche
,
J. Chem. Phys.
136
,
084105
(
2012
).
131.
R.
Ramírez
,
T.
López-Ciudad
,
P. P.
Kumar
, and
D.
Marx
,
J. Chem. Phys.
121
,
3973
(
2004
).
132.
M.
Ceriotti
,
G.
Bussi
, and
M.
Parrinello
,
Phys. Rev. Lett.
103
,
030603
(
2009
).
133.
M.
Ceriotti
,
G.
Bussi
, and
M.
Parrinello
,
J. Chem. Theory Comput.
6
,
1170
(
2010
).
134.
L. B.
Skinner
,
C.
Huang
,
D.
Schlesinger
,
L. G. M.
Pettersson
,
A.
Nilsson
, and
C. J.
Benmore
,
J. Chem. Phys.
138
,
074506
(
2013
).
135.
T. D.
Kühne
,
T. A.
Pascal
,
E.
Kaxiras
, and
Y.
Jung
,
J. Phys. Chem. Lett.
2
,
105
(
2011
).
136.
F.
Corsetti
,
E.
Artacho
,
J. M.
Soler
,
S. S.
Alexandre
, and
M.-V.
Fernández-Serra
,
J. Chem. Phys.
139
,
194502
(
2013
).
137.
L. G.
Pettersson
and
A.
Nilsson
,
J. Non-Cryst. Solids
407
,
399
(
2014
).
138.
P.
Jurecka
,
J.
Sponer
,
J.
Cerny
, and
P.
Hobza
,
Phys. Chem. Chem. Phys.
8
,
1985
(
2006
).
139.
T.
Takatani
,
E. G.
Hohenstein
,
M.
Malagoli
,
M. S.
Marshall
, and
C. D.
Sherrill
,
J. Chem. Phys.
132
,
144104
(
2010
).
140.
J.
Klimeš
,
D.
Bowler
, and
A.
Michaelides
,
J. Phys.: Condens. Matter
22
,
022201
(
2010
).
141.
J.
Klimeš
,
D.
Bowler
, and
A.
Michaelides
,
Phys. Rev. B
83
,
1
(
2011
).
142.
Y.
Zhao
and
D. G.
Truhlar
,
J. Chem. Phys.
125
,
194101
(
2006
).
143.
Y.
Zhao
and
D. G.
Truhlar
,
Theor. Chem. Acc.
120
,
215
(
2007
).
144.
J.
VandeVondele
,
P.
Troester
,
P.
Tavan
, and
G.
Mathias
,
J. Phys. Chem. A
116
,
2466
(
2012
).
145.
F.
Giberti
,
A. A.
Hassanali
,
M.
Ceriotti
, and
M.
Parrinello
,
J. Phys. Chem. B
118
,
13226
(
2014
).
146.
J. A.
Morrone
and
R.
Car
,
Phys. Rev. Lett.
101
,
017801
(
2008
).
147.
F.
Paesani
,
S.
Iuchi
, and
G. A.
Voth
,
J. Chem. Phys.
127
,
074506
(
2007
).
148.
G. S.
Fanourgakis
,
G. K.
Schenter
, and
S. S.
Xantheas
,
J. Chem. Phys.
125
,
141102
(
2006
).
149.
S.
Fritsch
,
R.
Potestio
,
D.
Donadio
, and
K.
Kremer
,
J. Chem. Theory Comput.
10
,
816
(
2014
).
150.
S.
Habershon
and
D. E.
Manolopoulos
,
J. Chem. Phys.
131
,
244518
(
2009
).
151.
M.
Ceriotti
and
D. E.
Manolopoulos
,
Phys. Rev. Lett.
109
,
100604
(
2012
).
152.
M.
Cardona
and
M. L. W.
Thewalt
,
Rev. Mod. Phys.
77
,
1173
(
2005
).
153.
R.
Ramírez
,
C. P.
Herrero
, and
E. R.
Hernández
,
Phys. Rev. B
73
,
245202
(
2006
).
154.
T. W.
Marin
,
K.
Takahashi
, and
D. M.
Bartels
,
J. Chem. Phys.
125
,
104314
(
2006
).
155.
F.
Labat
,
C.
Pouchan
,
C.
Adamo
, and
G. E.
Scuseria
,
J. Comput. Chem.
32
,
2177
(
2011
).
156.
C.
Fang
,
W.-F.
Li
,
R. S.
Koster
,
J.
Klimes
,
A.
van Blaaderen
, and
M. A.
van Huis
,
Phys. Chem. Chem. Phys.
17
,
365
(
2015
).
157.
T. A.
Pham
,
C.
Zhang
,
E.
Schwegler
, and
G.
Galli
,
Phys. Rev. B
89
,
060202(R)
(
2014
).
158.
P.
Hobbs
,
Ice Physics
(
Clarendon Press
,
1974
).
159.
M.
Macher
,
J.
Klimes
,
C.
Franchini
, and
G.
Kresse
,
J. Chem. Phys.
140
,
084502
(
2014
).
160.
M. J.
Gillan
,
D.
Alfè
,
P. J.
Bygrave
,
C. R.
Taylor
, and
F. R.
Manby
,
J. Chem. Phys.
139
,
114101
(
2013
).
161.
B.
Santra
,
J.
Klimeš
,
A.
Tkatchenko
,
D.
Alfè
,
B.
Slater
,
A.
Michaelides
,
R.
Car
, and
M.
Scheffler
,
J. Chem. Phys.
139
,
154702
(
2013
).
162.
P. J.
Feibelman
,
Phys. Chem. Chem. Phys.
10
,
4688
(
2008
).
163.
B.
Pamuk
,
J. M.
Soler
,
R.
Ramírez
,
C. P.
Herrero
,
P. W.
Stephens
,
P. B.
Allen
, and
M.-V.
Fernández-Serra
,
Phys. Rev. Lett.
108
,
193003
(
2012
).
164.
K.
Röttger
,
A.
Endriss
,
J.
Ihringer
,
S.
Doyle
, and
W. F.
Kuhs
,
Acta Crystallogr., Sect. B: Struct. Sci.
50
,
644
(
1994
).
165.
K.
Röttger
,
A.
Endriss
,
J.
Ihringer
,
S.
Doyle
, and
W. F.
Kuhs
,
Acta Crystallogr., Sect. B: Struct. Sci.
68
,
91
(
2012
).
166.
J. E.
Bertie
and
Z.
Lan
,
Appl. Spectrosc.
50
,
1047
(
1996
).
167.
G. R.
Medders
and
F.
Paesani
,
J. Chem. Theory Comput.
11
,
1145
(
2015
).
168.
M.
Holz
,
S.
Heil
, and
A.
Sacco
,
Phys. Chem. Chem. Phys.
2
,
4740
(
2000
).
169.
W.
Price
,
H.
Ide
, and
Y.
Arata
,
J. Phys. Chem. A
103
,
448
(
1999
).
170.
I.
Yeh
and
G.
Hummer
,
J. Phys. Chem. B
108
,
15873
(
2004
).
171.
S.
Habershon
,
T. E.
Markland
, and
D. E.
Manolopoulos
,
J. Chem. Phys.
131
,
024501
(
2009
).
172.
See supplementary material at http://dx.doi.org/10.1063/1.4927325 for supporting information which includes running averages of the density for 14 different functionals, the corresponding O–O and O–H radial distribution functions, covergence tests of the radial distribution functions with respect to plane wave cutoff for BLYP and M06L, basis set convergence tests, k-point sampling tests, validation of the PBE and M06L energies with respect to pseudopotential and implementation, a comparison of MC and MD sampling, validation of the PWPB95-D3 implementation, detailed computational parameters, including basis sets, pseudopotentials, and various sample input files.

Supplementary Material

You do not currently have access to this content.