We introduce electrochemical dynamics with implicit degrees of freedom (EChemDID), a model to describe electrochemical driving force in reactive molecular dynamics simulations. The method describes the equilibration of external electrochemical potentials (voltage) within metallic structures and their effect on the self-consistent partial atomic charges used in reactive molecular dynamics. An additional variable assigned to each atom denotes the local potential in its vicinity and we use fictitious, but computationally convenient, dynamics to describe its equilibration within connected metallic structures on-the-fly during the molecular dynamics simulation. This local electrostatic potential is used to dynamically modify the atomic electronegativities used to compute partial atomic changes via charge equilibration. Validation tests show that the method provides an accurate description of the electric fields generated by the applied voltage and the driving force for electrochemical reactions. We demonstrate EChemDID via simulations of the operation of electrochemical metallization cells. The simulations predict the switching of the device between a high-resistance to a low-resistance state as a conductive metallic bridge is formed and resistive currents that can be compared with experimental measurements. In addition to applications in nanoelectronics, EChemDID could be useful to model electrochemical energy conversion devices.

1.
B. J.
Alder
and
T. E.
Wainwright
, “
Phase transition for a hard sphere system
,”
J. Chem. Phys.
27
(
5
),
1208
1209
(
1957
).
2.
D. R.
Herschbach
, “
Molecular-dynamics of elementary chemical-reactions (Nobel lecture)
,”
Angew. Chem., Int. Ed. Engl.
26
(
12
),
1221
1243
(
1987
).
3.
M.
Karplus
, “
Development of multiscale models for complex chemical systems: From H+H2 to biomolecules (Nobel lecture)
,”
Angew. Chem., Int. Ed. Engl.
53
(
38
),
9992
(
2014
).
4.
B. L.
Holian
and
P. S.
Lomdahl
, “
Plasticity induced by shock waves in nonequilibrium molecular-dynamics simulations
,”
Science
280
(
5372
),
2085
(
1998
).
5.
J.
Song
and
W. A.
Curtin
, “
Atomic mechanism and prediction of hydrogen embrittlement in iron
,”
Nat. Mater.
12
(
2
),
145
151
(
2013
).
6.
M.
Karplus
and
J. A.
McCammon
, “
Molecular dynamics simulations of biomolecules
,”
Nat. Struct. Biol.
9
(
9
),
646
652
(
2002
).
7.
A.
Strachan
,
G.
Klimeck
, and
M.
Lundstrom
, “
Cyber-enabled simulations in nanoscale science and engineering introduction
,”
Comput. Sci. Eng.
12
(
2
),
12
17
(
2010
).
8.
S. P.
Brophy
,
A. J.
Magana
, and
A.
Strachan
, “
Lectures and simulation laboratories to improve learners conceptual understanding
,”
Adv. Eng. Educ.
3
(
3
),
1
27
(
2013
).
9.
R.
Car
and
M.
Parrinello
, “
Unified approach for molecular-dynamics and density-functional theory
,”
Phys. Rev. Lett.
55
(
22
),
2471
2474
(
1985
).
10.
M.
Sprik
,
J.
Hutter
, and
M.
Parrinello
, “
Ab initio molecular dynamics simulation of liquid water: Comparison three gradient-corrected density functionals
,”
J. Chem. Phys.
105
(
3
),
1142
1152
(
1996
).
11.
M. E.
Tuckerman
,
D.
Marx
,
M. L.
Klein
, and
M.
Parrinello
, “
On the quantum nature of the shared proton in hydrogen bonds
,”
Science
275
(
5301
),
817
820
(
1997
).
12.
M. S.
Daw
and
M. I.
Baskes
, “
Embedded-atom method—Derivation and application to impurities, surfaces, and other defects in metals
,”
Phys. Rev. B
29
(
12
),
6443
6453
(
1984
).
13.
M. I.
Baskes
, “
Modified embedded-atom potentials for cubic materials and impurities
,”
Phys. Rev. B
46
(
5
),
2727
2742
(
1992
).
14.
F. H.
Stillinger
and
T. A.
Weber
, “
Computer-simulation of local order in condensed phases of silicon
,”
Phys. Rev. B
31
(
8
),
5262
5271
(
1985
).
15.
J.
Tersoff
, “
New empirical-approach for the structure and energy of covalent systems
,”
Phys. Rev. B
37
(
12
),
6991
7000
(
1988
).
16.
G. V.
Lewis
and
C. R. A.
Catlow
, “
Potential models for ionic oxides
,”
J. Phys. C: Solid State Phys.
18
(
6
),
1149
1161
(
1985
).
17.
F. H.
Streitz
and
J. W.
Mintmire
, “
Electrostatic potentials for metal-oxide surfaces and interfaces
,”
Phys. Rev. B
50
(
16
),
11996
(
1994
).
18.
S. L.
Mayo
,
B. D.
Olafson
, and
W. A.
Goddard
, “
Dreiding—A generic force-field for molecular simulations
,”
J. Phys. Chem.
94
(
26
),
8897
8909
(
1990
).
19.
W. D.
Cornell
,
P.
Cieplak
,
C. I.
Bayly
,
I. R.
Gould
,
K. M.
Merz
,
D. M.
Ferguson
,
D. C.
Spellmeyer
,
T.
Fox
,
J. W.
Caldwell
, and
P. A.
Kollman
, “
A second generation force field for the simulation of proteins, nucleic acids, and organic molecules (Vol. 117,p. 5179, 1995)
,”
J. Am. Chem. Soc.
118
(
9
),
2309
(
1996
).
20.
B. R.
Brooks
,
C. L.
Brooks
III
,
A. D.
Mackerell
, Jr.
,
L.
Nilsson
,
R. J.
Petrella
,
B.
Roux
,
Y.
Won
,
G.
Archontis
,
C.
Bartels
,
S.
Boresch
,
A.
Caflisch
,
L.
Caves
,
Q.
Cui
,
A. R.
Dinner
,
M.
Feig
,
S.
Fischer
,
J.
Gao
,
M.
Hodoscek
,
W.
Im
,
K.
Kuczera
,
T.
Lazaridis
,
J.
Ma
,
V.
Ovchinnikov
,
E.
Paci
,
R. W.
Pastor
,
C. B.
Post
,
J. Z.
Pu
,
M.
Schaefer
,
B.
Tidor
,
R. M.
Venable
,
H. L.
Woodcock
,
X.
Wu
,
W.
Yang
,
D. M.
York
, and
M.
Karplus
, “
CHARMM: The biomolecular simulation program
,”
J. Comput. Chem.
30
(
10, SI
),
1545
1614
(
2009
).
21.
A. C. T.
van Duin
,
S.
Dasgupta
,
F.
Lorant
, and
W. A.
Goddard
, “
ReaxFF: A reactive force field for hydrocarbons
,”
J. Phys. Chem. A
105
(
41
),
9396
9409
(
2001
).
22.
H. S.
Johnston
and
C.
Parr
, “
Activation energies from bond energies. 1. Hydrogen transfer reactions
,”
J. Am. Chem. Soc.
85
(
17
),
2544
2551
(
1963
).
23.
S. W.
Rick
,
S. J.
Stuart
, and
B. J.
Berne
, “
Dynamical fluctuating charge force-fields - application to liquid water
,”
J. Chem. Phys.
101
(
7
),
6141
6156
(
1994
).
24.
A.
Strachan
,
A. C. T.
van Duin
,
D.
Chakraborty
,
S.
Dasgupta
, and
W. A.
Goddard
, “
Shock waves in high-energy materials: The initial chemical events in nitramine RDX
,”
Phys. Rev. Lett.
91
(
9
),
098301
(
2003
).
25.
J. C.
Fogarty
,
H. M.
Aktulga
,
A. Y.
Grama
,
A. C. T.
van Duin
, and
S. A.
Pandit
, “
A reactive molecular dynamics simulation of the silica-water interface
,”
J. Chem. Phys.
132
(
17
),
174704
(
2010
).
26.
A. C. T.
van Duin
,
V. S.
Bryantsev
,
M. S.
Diallo
,
W. A.
Goddard
,
O.
Rahaman
,
D. J.
Doren
,
D.
Raymand
, and
K.
Hermansson
, “
Development and validation of a ReaxFF reactive force field for Cu cation/water interactions and copper metal/metal oxide/metal hydroxide condensed phases
,”
J. Phys. Chem. A
114
(
35
),
9507
9514
(
2010
).
27.
K. D.
Nielson
,
A. C. T.
van Duin
,
J.
Oxgaard
,
W. Q.
Deng
, and
W. A.
Goddard
, “
Development of the ReaxFF reactive force field for describing transition metal catalyzed reactions, with application to the initial stages of the catalytic formation of carbon nanotubes
,”
J. Phys. Chem. A
109
(
3
),
493
499
(
2005
).
28.
J. M.
Tarascon
and
M.
Armand
, “
Issues and challenges facing rechargeable lithium batteries
,”
Nature
414
(
6861
),
359
367
(
2001
).
29.
P.
Simon
and
Y.
Gogotsi
, “
Materials for electrochemical capacitors
,”
Nat. Mater.
7
(
11
),
845
854
(
2008
).
30.
R.
Waser
and
M.
Aono
, “
Nanoionics-based resistive switching memories
,”
Nat. Mater.
6
(
11
),
833
840
(
2007
).
31.
W. B.
Dapp
and
M. H.
Mueser
, “
Redox reactions with empirical potentials: Atomistic battery discharge simulations
,”
J. Chem. Phys.
139
(
6
),
064106
(
2013
).
32.
C.
Merlet
,
B.
Rotenberg
,
P. A.
Madden
,
P.-L.
Taberna
,
P.
Simon
,
Y.
Gogotsi
, and
M.
Salanne
, “
On the molecular origin of supercapacitance in nanoporous carbon electrodes
,”
Nat. Mater.
11
(
4
),
306
310
(
2012
).
33.
N.
Onofrio
,
D.
Guzman
, and
A.
Strachan
, “
Atomic origin of ultrafast resistance switching in nanoscale electrometallization cells
,”
Nat. Mater.
14
,
440
446
(
2015
).
34.
A. K.
Rappe
and
W. A.
Goddard
, “
Charge equilibration for molecular-dynamics simulations
,”
J. Phys. Chem.
95
(
8
),
3358
3363
(
1991
).
35.
S. J.
Stuart
,
A. B.
Tutein
, and
J. A.
Harrison
, “
A reactive potential for hydrocarbons with intermolecular interactions
,”
J. Chem. Phys.
112
(
14
),
6472
6486
(
2000
).
36.
D. W.
Brenner
,
O. A.
Shenderova
,
J. A.
Harrison
,
S. J.
Stuart
,
B.
Ni
, and
S. B.
Sinnott
, “
A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons
,”
J. Phys.: Condens. Matter
14
(
4
),
783
802
(
2002
).
37.
W. J.
Mortier
,
S. K.
Ghosh
, and
S.
Shankar
, “
Electronegativity equalization method for the calculation of atomic charges in molecules
,”
J. Am. Chem. Soc.
108
(
15
),
4315
4320
(
1986
).
38.
R. A.
Nistor
,
J. G.
Polihronov
,
M. H.
Muser
, and
N. J.
Mosey
, “
A generalization of the charge equilibration method for nonmetallic materials
,”
J. Chem. Phys.
125
(
9
),
094108
(
2006
).
39.
T.
Verstraelen
,
P. W.
Ayers
,
V.
Van Speybroeck
, and
M.
Waroquier
, “
ACKS2: Atom-condensed Kohn-Sham DFT approximated to second order
,”
J. Chem. Phys.
138
(
7
),
074108
(
2013
).
40.
J.
Chen
and
T. J.
Martinez
, “
Charge conservation in electronegativity equalization and its implications for the electrostatic properties of fluctuating-charge models
,”
J. Chem. Phys.
131
(
4
),
044114
(
2009
).
41.
O.
Assowe
,
O.
Politano
,
V.
Vignal
,
P.
Arnoux
,
B.
Diawara
,
O.
Verners
, and
A. C. T.
van Duin
, “
Reactive molecular dynamics of the initial oxidation stages of Ni(111) in pure water: Effect of an applied electric field
,”
J. Phys. Chem. A
116
(
48
),
11796
11805
(
2012
).
42.
H.
Hakkinen
and
U.
Landman
, “
Superheating, melting, and annealing of copper surfaces
,”
Phys. Rev. Lett.
71
(
7
),
1023
1026
(
1993
).
43.
K.-H.
Lin
,
B. L.
Holian
,
T. C.
Germann
, and
A.
Strachan
, “
Mesodynamics with implicit degrees of freedom
,”
J. Chem. Phys.
141
(
6
),
064107
(
2014
).
44.
A.
Strachan
and
B. L.
Holian
, “
Energy exchange between mesoparticles and their internal degrees of freedom
,”
Phys. Rev. Lett.
94
(
1
),
014301
(
2005
).
45.
J. D.
Jackson
,
Classical Electrodynamics
, 3rd ed. (
John Wiley & Sons, Inc.
,
New Jersey, USA
,
1991
).
46.
See supplementary material at http://dx.doi.org/10.1063/1.4927562 for more details.
47.
P.
Steve
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
(
1
),
1
19
(
1995
).
48.
N.
Onofrio
and
A.
Strachan
, LAMMPS, Alejandro Strachan Research Group, 2015 https://nanohub.org/groups/strachangroup/lammpsmodules.
49.
H. M.
Aktulga
,
J. C.
Fogarty
,
S. A.
Pandit
, and
A. Y.
Grama
, “
Parallel reactive molecular dynamics: Numerical methods and algorithmic techniques
,”
Parallel Comput.
38
(
4-5
),
245
259
(
2012
).
50.
R.
Waser
,
R.
Dittmann
,
G.
Staikov
, and
K.
Szot
, “
Redox-based resistive switching memories–nanoionic mechanisms, prospects, and challenges
,”
Adv. Mater.
21
(
25-26
),
2632
(
2009
).
51.
N. L.
Anderson
,
R. P.
Vedula
,
P. A.
Schultz
,
R. M.
Van Ginhoven
, and
A.
Strachan
, “
First-principles investigation of low energy E′ center precursors in amorphous silica
,”
Phys. Rev. Lett.
106
(
20
),
206402
(
2011
).
52.
T.
Tsuruoka
,
K.
Terabe
,
T.
Hasegawa
,
I.
Valov
,
R.
Waser
, and
M.
Aono
, “
Effects of moisture on the switching characteristics of oxide-based, gapless-type atomic switches
,”
Adv. Funct. Mater.
22
(
1
),
70
77
(
2012
).
53.
I.
Valov
,
I.
Sapezanskaia
,
A.
Nayak
,
T.
Tsuruoka
,
T.
Bredow
,
T.
Hasegawa
,
G.
Staikov
,
M.
Aono
, and
R.
Waser
, “
Atomically controlled electrochemical nucleation at superionic solid electrolyte surfaces
,”
Nat. Mater.
11
(
6
),
530
535
(
2012
).
54.
N.
Bonnet
and
N.
Marzari
, “
First-principles prediction of the equilibrium shape of nanoparticles under realistic electrochemical conditions
,”
Phys. Rev. Lett.
110
(
8
),
086104
(
2013
).

Supplementary Material

You do not currently have access to this content.