We introduce electrochemical dynamics with implicit degrees of freedom (EChemDID), a model to describe electrochemical driving force in reactive molecular dynamics simulations. The method describes the equilibration of external electrochemical potentials (voltage) within metallic structures and their effect on the self-consistent partial atomic charges used in reactive molecular dynamics. An additional variable assigned to each atom denotes the local potential in its vicinity and we use fictitious, but computationally convenient, dynamics to describe its equilibration within connected metallic structures on-the-fly during the molecular dynamics simulation. This local electrostatic potential is used to dynamically modify the atomic electronegativities used to compute partial atomic changes via charge equilibration. Validation tests show that the method provides an accurate description of the electric fields generated by the applied voltage and the driving force for electrochemical reactions. We demonstrate EChemDID via simulations of the operation of electrochemical metallization cells. The simulations predict the switching of the device between a high-resistance to a low-resistance state as a conductive metallic bridge is formed and resistive currents that can be compared with experimental measurements. In addition to applications in nanoelectronics, EChemDID could be useful to model electrochemical energy conversion devices.
Skip Nav Destination
Article navigation
7 August 2015
Research Article|
August 06 2015
Voltage equilibration for reactive atomistic simulations of electrochemical processes
Nicolas Onofrio
;
Nicolas Onofrio
School of Materials Engineering and Birck Nanotechnology Center,
Purdue University
, West Lafayette, Indiana 47906, USA
Search for other works by this author on:
Alejandro Strachan
Alejandro Strachan
a)
School of Materials Engineering and Birck Nanotechnology Center,
Purdue University
, West Lafayette, Indiana 47906, USA
Search for other works by this author on:
a)
Author to whom correspondence should be addressed. Electronic mail: strachan@purdue.edu
J. Chem. Phys. 143, 054109 (2015)
Article history
Received:
April 14 2015
Accepted:
July 08 2015
Citation
Nicolas Onofrio, Alejandro Strachan; Voltage equilibration for reactive atomistic simulations of electrochemical processes. J. Chem. Phys. 7 August 2015; 143 (5): 054109. https://doi.org/10.1063/1.4927562
Download citation file:
Sign in
Don't already have an account? Register
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Pay-Per-View Access
$40.00
Citing articles via
DeePMD-kit v2: A software package for deep potential models
Jinzhe Zeng, Duo Zhang, et al.