We address the problem of simulating biochemical reaction networks with time-dependent rates and propose a new algorithm based on our rejection-based stochastic simulation algorithm (RSSA) [Thanh et al., J. Chem. Phys. 141(13), 134116 (2014)]. The computation for selecting next reaction firings by our time-dependent RSSA (tRSSA) is computationally efficient. Furthermore, the generated trajectory is exact by exploiting the rejection-based mechanism. We benchmark tRSSA on different biological systems with varying forms of reaction rates to demonstrate its applicability and efficiency. We reveal that for nontrivial cases, the selection of reaction firings in existing algorithms introduces approximations because the integration of reaction rates is very computationally demanding and simplifying assumptions are introduced. The selection of the next reaction firing by our approach is easier while preserving the exactness.

1.
J. M.
Pedraza
and
A.
van Oudenaarden
, “
Noise propagation in gene networks
,”
Science
307
(
5717
),
1965
1969
(
2005
).
2.
H. H.
McAdams
and
A.
Arkin
, “
It’s a noisy business! Genetic regulation at the nanomolar scale
,”
Trends Genet.
15
(
2
),
65
(
1999
).
3.
H. H.
McAdams
and
A.
Arkin
, “
Stochastic mechanisms in gene expression
,”
Proc. Natl. Acad. Sci. U. S. A.
94
(
3
),
814
819
(
1997
).
4.
J.
Vilar
,
H.
Kueh
,
N.
Barkai
, and
S.
Leibler
, “
Mechanisms of noise-resistance in genetic oscillators
,”
Proc. Natl. Acad. Sci. U. S. A.
99
(
9
),
5988
5992
(
2002
).
5.
A.
Arkin
,
J.
Ross
, and
H. H.
McAdams
, “
Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected Escherichia coli cells
,”
Genetics
149
(
4
),
1633
1648
(
1998
).
6.
E. M.
Ozbudak
,
M.
Thattai
,
I.
Kurtser
,
A. D.
Grossman
, and
A.
van Oudenaarden
, “
Regulation of noise in the expression of a single gene
,”
Nat. Genet.
31
,
69
73
(
2002
).
7.
J. M.
Raser
and
E. K.
O’Shea
, “
Noise in gene expression: Origins, consequences, and control
,”
Science
309
(
5743
),
2010
2013
(
2005
).
8.
D.
Gillespie
, “
A general method for numerically simulating the stochastic time evolution of coupled chemical reactions
,”
J. Comput. Phys.
22
(
4
),
403
434
(
1976
).
9.
D.
Gillespie
, “
Exact stochastic simulation of coupled chemical reactions
,”
J. Phys. Chem.
81
(
25
),
2340
2361
(
1977
).
10.
M.
Gibson
and
J.
Bruck
, “
Efficient exact stochastic simulation of chemical systems with many species and many channels
,”
J. Phys. Chem. A
104
(
9
),
1876
1889
(
2000
).
11.
Y.
Cao
,
H.
Li
, and
L.
Petzold
, “
Efficient formulation of the stochastic simulation algorithm for chemically reacting systems
,”
J. Chem. Phys.
121
(
9
),
4059
(
2004
).
12.
J.
McCollum
 et al, “
The sorting direct method for stochastic simulation of biochemical systems with varying reaction execution behavior
,”
Comput. Biol. Chem.
30
(
1
),
39
49
(
2006
).
13.
T.
Schulze
, “
Efficient kinetic Monte Carlo simulation
,”
J. Comput. Phys.
227
(
4
),
2455
2462
(
2008
).
14.
A.
Slepoy
,
A. P.
Thompson
, and
S. J.
Plimpton
, “
A constant-time kinetic Monte Carlo algorithm for simulation of large biochemical reaction networks
,”
J. Chem. Phys.
128
(
20
),
205101
(
2008
).
15.
V. H.
Thanh
and
R.
Zunino
, “
Tree-based search for stochastic simulation algorithm
,” in
Proceedings of ACM-SAC
(
ACM
,
2012
), pp.
1415
1416
.
16.
V. H.
Thanh
and
R.
Zunino
, “
Adaptive tree-based search for stochastic simulation algorithm
,”
Int. J. Comput. Biol. Drug Des.
7
(
4
),
341
357
(
2014
).
17.
J.
Blue
,
I.
Beichl
, and
F.
Sullivan
, “
Faster Monte Carlo simulations
,”
Phys. Rev. E
51
(
2
),
867
868
(
1995
).
18.
H.
Li
and
L.
Petzold
, “
Logarithmic direct method for discrete stochastic simulation of chemically reacting systems
,”
Technical Report
,
2006
.
19.
S.
Indurkhya
and
J.
Beal
, “
Reaction factoring and bipartite update graphs accelerate the Gillespie algorithm for large-scale biochemical systems
,”
PLoS One
5
(
1
),
8125
(
2010
).
20.
R.
Ramaswamy
,
N.
Gonzlez-Segredo
, and
I. F.
Sbalzarini
, “
A new class of highly efficient exact stochastic simulation algorithms for chemical reaction networks
,”
J. Chem. Phys.
130
(
24
),
244104
(
2009
).
21.
V. H.
Thanh
,
C.
Priami
, and
R.
Zunino
, “
Efficient rejection-based simulation of biochemical reactions with stochastic noise and delays
,”
J. Chem. Phys.
141
(
13
),
134116
(
2014
).
22.
V. H.
Thanh
,
R.
Zunino
, and
C.
Priami
, “
On the rejection-based algorithm for simulation and analysis of large-scale reaction networks
,”
J. Chem. Phys.
142
(
24
),
244106
(
2015
).
23.
V. H.
Thanh
, “
On efficient algorithms for stochastic simulation of biochemical reaction systems
,” PhD thesis,
University of Trento
, Italy,
2013
, http://eprints-phd.biblio.unitn.it/1070/.
24.
S.
Mauch
and
M.
Stalzer
, “
Efficient formulations for exact stochastic simulation of chemical systems
,”
IEEE/ACM Trans. Comput. Biol. Bioinf.
8
(
1
),
27
35
(
2011
).
25.
W.
Sandmann
, “
Discrete-time stochastic modeling and simulation of biochemical networks
,”
Comput. Biol. Chem.
32
(
4
),
292
(
2008
).
26.
D.
Gillespie
, “
Approximate accelerated stochastic simulation of chemically reacting
,”
J. Chem. Phys.
115
,
1716
1733
(
2001
).
27.
Y.
Cao
,
D.
Gillespie
, and
L.
Petzold
, “
Efficient step size selection for the tau-leaping simulation method
,”
J. Chem. Phys.
124
(
4
),
44109
(
2006
).
28.
A.
Auger
,
P.
Chatelain
, and
P.
Koumoutsakos
, “
R-leaping: Accelerating the stochastic simulation algorithm by reaction leaps
,”
J. Chem. Phys.
125
(
8
),
84103
(
2006
).
29.
H.
Li
and
L.
Petzold
, “
Efficient parallelization of the stochastic simulation algorithm for chemically reacting systems on the graphics processing unit
,”
Int. J. High Perform. Comput. Appl.
24
(
2
),
107
116
(
2010
).
30.
V. H.
Thanh
and
R.
Zunino
, “
Parallel stochastic simulation of biochemical reaction systems on multi-core processors
,” in
Proceedings of CSSim
(
Department of Intelligent Systems, FIT BUT
,
2011
), pp.
162
170
.
31.
T.
Lu
,
D.
Volfson
,
L.
Tsimring
, and
J.
Hasty
, “
Cellular growth and division in the Gillespie algorithm
,”
IEE Syst. Biol.
1
(
1
),
121
128
(
2004
).
32.
P.
Lecca
, “
A time-dependent extension of Gillespie algorithm for biochemical stochastic π-calculus
,” in
Proceedings of ACM-SAC
(
ACM
,
2006
), pp.
137
144
.
33.
R. R. P.
Purtan
and
A.
Udrea
, “
A modified stochastic simulation algorithm for time-dependent intensity rates
,” in
Proceedings of 19th International Conference on Control Systems and Computer Science (CSCS)
,
2013
(
IEEE
,
2013
), pp.
365
369
.
34.
D. F.
Anderson
, “
A modified next reaction method for simulating chemical systems with time dependent propensities and delays
,”
J. Chem. Phys.
127
(
21
),
214107
(
2007
).
35.
D.
Gillespie
, “
A rigorous derivation of the chemical master equation
,”
Physica A
188
(
1–3
),
404
425
(
2007
).
36.
B.
Munsky
and
M.
Khammash
, “
The finite state projection algorithm for the solution of the chemical master equation
,”
J. Chem. Phys.
124
,
044104
(
2006
).
37.
K.
Burrage
,
M.
Hegland
,
S.
Macnamara
, and
R.
Sidje
, “
A Krylov-based finite state projection algorithm for solving the chemical master equation arising in the discrete modelling of biological systems
,” in
Proceedings of The AA Markov 150th Anniversary Meeting
(
Boson Books
,
2006
), pp.
21
37
.
38.
M.
Mateescu
,
V.
Wolf
,
F.
Didier
, and
T. A.
Henzinger
, “
Fast adaptive uniformisation of the chemical master equation
,”
IET Syst. Biol.
4
(
6
),
441
452
(
2010
).
39.
D. F.
Anderson
and
T. G.
Kurtz
, “
Continuous time Markov chain models for chemical reaction networks
,” in
Design and Analysis of Biomolecular Circuits: Engineering Approaches to Systems and Synthetic Biology
, edited by
H.
Koeppl
, et al
(
Springer
,
2011
).
40.
R. E.
Moore
,
R. B.
Kearfott
, and
M. J.
Cloud
,
Introduction to Interval Analysis
(
SIAM
,
2009
).
41.
J.
Goutsias
, “
Quasiequilibrium approximation of fast reaction kinetics in stochastic biochemical systems
,”
J. Chem. Phys.
122
(
18
),
184102
(
2005
).
42.
R. M.
Anderson
,
Population Dynamics of Infectious Diseases: Theory and Applications
(
Chapman and Hall
,
London-New York
,
1982
).
43.
D. J.
Daley
and
J.
Gani
,
Epidemic Modeling: An Introduction
(
Cambridge University Press
,
2005
).
44.
N.
Bacaër
, “
On the stochastic SIS epidemic model in a periodic environment
,”
J. Math. Biol.
71
(
2
),
491
511
(
2015
).
45.
S.
MacNamara
and
K.
Burrage
, “
Stochastic modelling of T cell homeostasis for two competing clonotypes via the master equation
,” in
Mathematical Models and Immune Cell Biology
, edited by
C.
Molina-Pars
and
G.
Lythe
(
Springer
,
2011
), pp.
207
225
.
46.
Y.
Cao
and
L.
Petzold
, “
Accuracy limitations and the measurement of errors in the stochastic simulation of chemically reacting systems
,”
J. Comput. Phys.
212
(
1
),
6
26
(
2006
).
You do not currently have access to this content.