We provide a theoretical analysis for the intermediate scattering function typically measured in depolarized dynamic light scattering experiments. We calculate the field autocorrelation function g 1 V H ( Q , t ) in dependence on the wave vector Q and the time t explicitly in a vertical-horizontal scattering geometry for differently shaped solids of revolution. The shape of prolate cylinders, spherocylinders, spindles, and double cones with variable aspect ratio is expanded in rotational invariants flm(r). By Fourier transform of these expansion coefficients, a formal multipole expansion of the scattering function is obtained, which is used to calculate the weighting coefficients appearing in the depolarized scattering function. In addition to translational and rotational diffusion, especially the translational-rotational coupling of shape-anisotropic objects is considered. From the short-time behavior of the intermediate scattering function, the first cumulants Γ(Q) are calculated. In a depolarized scattering experiment, they deviate from the simple proportionality to Q2. The coefficients flm(Q) strongly depend on the geometry and aspect ratio of the particles. The time dependence, in addition, is governed by the translational and rotational diffusion tensors, which are calculated by means of bead models for differently shaped particles in dependence on their aspect ratio. Therefore, our analysis shows how details of the particle shape—beyond their aspect ratio—can be determined by a precise scattering experiment. This is of high relevance in understanding smart materials which involve suspensions of anisotropic colloidal particles.

1.
A.
Einstein
,
Ann. Phys. (Berlin)
322
,
549
(
1905
).
2.
A.
Einstein
,
Ann. Phys. (Berlin)
324
,
371
(
1906
).
3.
P. N.
Pusey
, “
Colloidal suspensions
,” in
Liquids, Freezing and Glass Transition
(
Elsevier
,
1991
), pp.
765
942
.
6.
B. J.
Berne
,
M.
Bishop
, and
A.
Rahman
,
J. Chem. Phys.
58
,
2696
(
1973
).
7.
T. A.
King
,
A.
Knox
, and
J. D. G.
McAdam
,
Biopolymers
12
,
1917
(
1973
).
8.
S. R.
Aragón
,
Macromolecules
20
,
370
(
1987
).
9.
V.
Degiorgio
,
R.
Piazza
, and
R. B.
Jones
,
Phys. Rev. E
52
,
2707
(
1995
).
10.
A. N.
Semenov
,
A. E.
Likhtman
,
D.
Vlassopoulos
,
K.
Karatasos
, and
G.
Fytas
,
Macromol. Theory Simul.
8
,
179
(
1999
).
11.
R.
Pecora
,
J. Nanopart. Res.
2
,
123
(
2000
).
12.
M.
Glidden
and
M.
Muschol
,
J. Phys. Chem. C
116
,
8128
(
2012
).
13.
S.
Alam
and
A.
Mukhopadhyay
,
Macromolecules
47
,
6919
(
2014
).
14.
P.
Holmqvist
,
V.
Meester
,
F.
Westermeier
, and
D.
Kleshchanok
,
J. Chem. Phys.
139
,
084905
(
2013
).
15.
D.
Brogioli
,
D.
Salerno
,
V.
Cassina
,
S.
Sacanna
,
A. P.
Philipse
,
F.
Croccolo
, and
F.
Mantegazza
,
Opt. Express
17
,
1222
(
2009
).
16.
N. G.
Khlebtsov
,
J. Nanophotonics
4
,
041587
(
2010
).
17.
L. K.
Lee
,
M.
Rance
,
W. J.
Chazin
, and
A. G.
Palmer
III
,
J. Biomol. NMR
9
,
287
(
1997
).
18.
19.
T.
Kirchhoff
,
H.
Löwen
, and
R.
Klein
,
Phys. Rev. E
53
,
5011
(
1996
).
20.
C. E.
Alvarez
and
S. H. L.
Klapp
,
Soft Matter
9
,
8761
(
2013
).
21.
K. V.
Edmond
,
M. T.
Elsesser
,
G. L.
Hunter
,
D. J.
Pine
, and
E. R.
Weeks
,
Proc. Natl. Acad. Sci. U. S. A.
109
,
17891
(
2012
).
22.
B. J.
Lemaire
,
P.
Davidson
,
J.
Ferré
,
J. P.
Jamet
,
P.
Panine
,
I.
Dozov
, and
J. P.
Jolivet
,
Phys. Rev. Lett.
88
,
125507
(
2002
).
23.
B. J.
Lemaire
,
P.
Davidson
,
P.
Panine
, and
J. P.
Jolivet
,
Phys. Rev. Lett.
93
,
267801
(
2004
).
24.
B. J.
Lemaire
,
P.
Davidson
,
D.
Petermann
,
P.
Panine
,
I.
Dozov
,
D.
Stoenescu
, and
J. P.
Jolivet
,
Eur. Phys. J. E
13
,
309
(
2004
).
25.
B. J.
Lemaire
,
P.
Davidson
,
J.
Ferré
,
J. P.
Jamet
,
D.
Petermann
,
P.
Panine
,
I.
Dozov
, and
J. P.
Jolivet
,
Eur. Phys. J. E
13
,
291
(
2004
).
26.
M.
Ozaki
,
S.
Kratohvil
, and
E.
Matijevic
,
J. Colloid Interface Sci.
102
,
146
(
1984
).
27.
C.
Märkert
,
B.
Fischer
, and
J.
Wagner
,
J. Appl. Crystallogr.
44
,
441
(
2011
).
28.
J.
Wagner
,
C.
Märkert
,
B.
Fischer
, and
L.
Müller
,
Phys. Rev. Lett.
110
,
048301
(
2013
).
29.
J. P.
Singh
,
P. P.
Lele
,
F.
Nettesheim
,
N. J.
Wagner
, and
E. M.
Furst
,
Phys. Rev. E
79
,
050401
(
2009
).
30.
N.
Nemoto
,
J. L.
Schrag
,
J. D.
Ferry
, and
R. W.
Fulton
,
Biopolymers
14
,
409
(
1975
).
31.
J. A. N.
Zasadzinski
and
R. B.
Meyer
,
Phys. Rev. Lett.
56
,
636
(
1986
).
32.
R.
Oldenbourg
,
X.
Wen
,
R. B.
Meyer
, and
D. L. D.
Caspar
,
Phys. Rev. Lett.
61
,
1851
(
1988
).
33.
H.
Graf
and
H.
Löwen
,
Phys. Rev. E
59
,
1932
(
1999
).
34.
Z.
Dogic
and
S.
Fraden
,
Phys. Rev. Lett.
78
,
2417
(
1997
).
35.
T. A. J.
Lenstra
,
Z.
Dogic
, and
J. K. G.
Dhont
,
J. Chem. Phys.
114
,
10151
(
2001
).
36.
K. R.
Purdy
,
Z.
Dogic
,
S.
Fraden
,
A.
Rühm
,
L.
Lurio
, and
S. G. J.
Mochrie
,
Phys. Rev. E
67
,
031708
(
2003
).
37.
J. E. G. J.
Wijnhoven
,
D. D.
van’t Zand
,
D.
van der Beek
, and
H. N. W.
Lekkerkerker
,
Langmuir
21
,
10422
(
2005
).
38.
J. E. G. J.
Wijnhoven
,
J. Colloid Interface Sci.
292
,
403
(
2005
).
39.
G. J.
Vroege
and
H. N. W.
Lekkerkerker
,
Rep. Prog. Phys.
55
,
1241
(
1992
).
40.
P.
Bolhuis
and
D.
Frenkel
,
J. Chem. Phys.
106
,
666
(
1997
).
41.
K. P.
Velikov
and
E.
Pelan
,
Soft Matter
4
,
1964
(
2008
).
42.
S.
Odenbach
,
J. Phys.: Condens. Matter
16
,
R1135
(
2004
).
43.
G.
Filipcsei
,
I.
Csetneki
,
A.
Szilágyi
, and
M.
Zrínyi
,
Adv. Polym. Sci.
206
,
137
(
2007
).
44.
G.
Pessot
,
P.
Cremer
,
D. Y.
Borin
,
S.
Odenbach
,
H.
Löwen
, and
A. M.
Menzel
,
J. Chem. Phys.
141
,
124904
(
2014
).
45.
M.
Tarama
,
P.
Cremer
,
D. Y.
Borin
,
S.
Odenbach
,
H.
Löwen
, and
A. M.
Menzel
,
Phys. Rev. E
90
,
042311
(
2014
).
47.
S. R.
Aragón
and
R.
Pecora
,
J. Chem. Phys.
82
,
5346
(
1985
).
48.
J.
Rodríguez-Fernández
,
J.
Pérez-Juste
,
L. M.
Liz-Marzán
, and
P. R.
Lang
,
J. Phys. Chem. C
111
,
5020
(
2007
).
49.
M.
Blume
and
D.
Gibbs
,
Phys. Rev. B
37
,
1779
(
1988
).
50.
M.
Suzuki
,
Y.
Inubushi
,
M.
Yabashi
, and
T.
Ishikawa
,
J. Synchrotron Radiat.
21
,
466
(
2014
).
51.
J. K. G.
Dhont
,
An Introduction to Dynamics of Colloids
(
Elsevier
,
Amsterdam
,
1996
).
52.
B. J.
Berne
and
R.
Pecora
,
Dynamic Light Scattering
(
Dover Publications
,
Mineola, New York
,
2000
).
53.

Note that the notation is slightly different than in Ref. 52, where the conditional probability density G(Ω, t|Ω0, 0) is included in the definition of the angle brackets (see Eq. (7.3.12) on page 121 in Ref. 52).

54.
C. G.
Gray
and
K. E.
Gubbins
,
Theory of Molecular Liquids
(
Clarendon Press
,
Oxford
,
1984
).
55.
R.
Wittkowski
and
H.
Löwen
,
Phys. Rev. E
85
,
021406
(
2012
).
56.
D. J.
Kraft
,
R.
Wittkowski
,
B.
ten Hagen
,
K. V.
Edmond
,
D. J.
Pine
, and
H.
Löwen
,
Phys. Rev. E
88
,
050301(R)
(
2013
).
57.
L.
Landau
and
G.
Placzek
,
Phys. Z. Sowjetunion
5
,
172
(
1934
).
58.
J.
García de la Torre
,
G.
del Rio Echenique
, and
A.
Ortega
,
J. Phys. Chem. B
111
,
955
(
2007
).
59.
J.
García de la Torre
,
S.
Navarro
,
M. C.
López Martínez
,
F. G.
Díaz
, and
J. J.
López Cascales
,
Biophys. J.
67
,
530
(
1994
).
60.
B.
Carrasco
and
J.
García de la Torre
,
J. Chem. Phys.
111
,
4817
(
1999
).
61.
A.
Kaiser
,
A.
Peshkov
,
A.
Sokolov
,
B.
ten Hagen
,
H.
Löwen
, and
I. S.
Aranson
,
Phys. Rev. Lett.
112
,
158101
(
2014
).
62.
V.
Bloomfield
,
W. O.
Dalton
, and
K. E.
van Holde
,
Biopolymers
5
,
135
(
1967
).
63.
V.
Bloomfield
,
K. E.
van Holde
, and
W. O.
Dalton
,
Biopolymers
5
,
149
(
1967
).
64.
B.
Carrasco
and
J.
Garcia de la Torre
,
Biophys. J.
76
,
3044
(
1999
).
65.
J.
García de la Torre
and
B.
Carrasco
,
Biopolymers
63
,
163
(
2002
).
66.
J. R.
Blake
,
Math. Proc. Cambridge Philos. Soc.
70
,
303
(
1971
).
67.
F.
Kümmel
,
B.
ten Hagen
,
R.
Wittkowski
,
I.
Buttinoni
,
R.
Eichhorn
,
G.
Volpe
,
H.
Löwen
, and
C.
Bechinger
,
Phys. Rev. Lett.
110
,
198302
(
2013
).
68.
B.
ten Hagen
,
F.
Kümmel
,
R.
Wittkowski
,
D.
Takagi
,
H.
Löwen
, and
C.
Bechinger
,
Nat. Commun.
5
,
4829
(
2014
).
69.

The software HYDRO++ can also be used to calculate the diffusion coefficients of biaxial particles. In that case, it becomes a bit more complicated to calculate the bead positions for the bead models but this does not nameable affect the computation time.

70.
C.
Detlefs
,
M.
Sanchez del Rio
, and
C.
Mazzoli
,
Eur. Phys. J.: Spec. Top.
208
,
359
(
2012
).
71.
S.
Odenbach
,
Magnetoviscous Effects in Ferrofluids
(
Springer
,
Berlin, Heidelberg
,
2002
).
72.
A.
Pal
,
V.
Malik
,
L.
He
,
B. H.
Erné
,
Y.
Yin
,
W. K.
Kegel
, and
A. V.
Petukhov
,
Angew. Chem., Int. Ed.
54
,
1803
(
2015
).
73.
H.
Graf
and
H.
Löwen
,
J. Phys.: Condens. Matter
11
,
1435
(
1999
).
74.
A. F.
Demirörs
,
P. M.
Johnson
,
C. M.
van Kats
,
A.
van Blaaderen
, and
A.
Imhof
,
Langmuir
26
,
14466
(
2010
).
75.
Y.
Shimbo
,
E.
Gorecka
,
D.
Pociecha
,
F.
Araoka
,
M.
Goto
,
Y.
Takanishi
,
K.
Ishikawa
,
J.
Mieczkowski
,
K.
Gomola
, and
H.
Takezoe
,
Phys. Rev. Lett.
97
,
113901
(
2006
).
76.
N.
Ghoshal
,
K.
Mukhopadhyay
, and
S. K.
Roy
,
Phys. Rev. E
89
,
042505
(
2014
).
You do not currently have access to this content.