Ionic micelles in an aqueous solution containing single-charged counter-ions have been simulated by molecular dynamics. For both cationic and anionic micelles, it has been demonstrated that explicit description of solvent has strong effect on the micelle’s electric field. The sign of the local charge alters in the immediate vicinity of the micellar crown and the electric potential varies nonmonotonically. Two micelle models have been examined: the hybrid model with a rigid hydrocarbon core and the atomistic model. For three molecular models of water (Simple Point Charge model (SPC), Transferable Intermolecular Potential 5- Points (TIP5P) and two-centered S2), the results have been compared with those for the continuum solvent model. The orientational ordering of solvent molecules has strong effect on the local electric field surprisingly far from the micelle surface.

1.
J.
Lyklema
,
Fundamental of Interface and Colloid Science Volume 2. Solid-Liquid Interfaces
(
Academic Press
,
London
,
1995
), p.
779
.
2.
V.
Vlachy
, “
Ionic effects beyond Poisson-Boltzmann theory
,”
Annu. Rev. Phys. Chem.
50
,
145
165
(
1999
).
3.
A. V.
Lukashin
,
D. B.
Beglov
, and
M. D.
Frank-Kamenetskii
, “
Allowance for spatial dispersion of dielectric permittivity in polyelectrolyte model of DNA
,”
J. Biomol. Struct. Dyn.
9
,
517
523
(
1991
).
4.
P. A.
Bopp
,
A. A.
Kornyshev
, and
G.
Sutmann
, “
Static nonlocal dielectric function of liquid water
,”
Phys. Rev. Lett.
76
,
1280
1283
(
1996
).
5.
M. V.
Fedorov
and
A. A.
Kornyshev
, “
Unravelling the solvent response to neutral and charged solutes
,”
Mol. Phys.
105
,
1
16
(
2007
).
6.
D. J.
Bonthuis
,
S.
Gekle
, and
R. R.
Netz
, “
Profile of the static permittivity tensor of water at interfaces: Consequences for capacitance, hydration interaction and ion adsorption
,”
Langmuir
28
,
7679
7694
(
2012
).
7.
D.
Boda
and
D.
Henderson
, “
The capacitance of the solvent primitive model double layer at low effective temperatures
,”
J. Chem. Phys.
112
,
8934
8938
(
2000
).
8.
O. V.
Semashko
,
S. V.
Burov
, and
E. N.
Brodskaya
, “
Simulation of the electrical double layer of a spherical micelle of an anionic substance with regard to the solvent structure
,”
Colloid J.
71
,
846
851
(
2009
).
9.
L.
Lu
and
M. L.
Berkowitz
, “
Hydration force between model hydrophilic surfaces: Computer simulations
,”
J. Chem. Phys.
124
,
101101
(
2006
).
10.
X.
Xia
and
M.
Berkowitz
, “
Electric-field induced of water at a platinum-water interface: A molecular dynamics computer simulation
,”
Phys. Rev. Lett.
74
,
3193
3196
(
1995
).
11.
E.
Spohr
, “
Molecular simulation of the electrochemical double layer
,”
Electrochim. Acta
44
,
1697
1705
(
1999
).
12.
P. S.
Crozier
,
R. L.
Rowley
, and
D.
Henderson
, “
Molecular dynamics calculations of the electrochemical properties of electrolyte systems between charged electrodes
,”
J. Chem. Phys.
113
,
9202
9207
(
2000
).
13.
M. L.
Berkowitz
,
D. L.
Bostick
, and
S.
Pandit
, “
Aqueous solutions next to phospholipid membrane surfaces: Insights from simulations
,”
Chem. Rev.
106
,
1527
1539
(
2006
).
14.
Sh.
Dewan
,
V.
Carnevale
,
A.
Bankura
,
A.
Eftekhari-Bafrooei
,
G.
Fiorin
,
M. L.
Klein
, and
E.
Borguet
, “
Structure of water at charged interfaces: A molecular dynamics study
,”
Langmuir
30
,
8056
8065
(
2014
).
15.
J. W.
Lee
,
J. A.
Templeton
,
K. K.
Mandadapu
, and
J. A.
Zimmerman
, “
Comparison of molecular and primitive solvent models for electrical double layers in nanochannels
,”
J. Chem. Theory Comput.
9
,
3051
3061
(
2013
).
16.
A. D.
Friesen
and
D. V.
Matyushov
, “
Local polarity excess at the interface of water with a nonpolar solute
,”
Chem. Phys. Lett.
511
,
256
261
(
2011
).
17.
S.
Parez
,
M.
Předota
, and
M.
Machesky
, “
Dielectric properties of water at rutile and graphite surfaces: Effect of molecular structure
,”
J. Phys. Chem. C
118
,
4818
4834
(
2014
).
18.
J.
Boecker
,
J.
Brickmann
, and
P.
Bopp
, “
Molecular dynamics simulation study of an n-decyltrimethylammonium chloride micelle in water
,”
J. Phys. Chem.
98
,
712
717
(
1994
).
19.
S.
Pal
,
B.
Bagchi
, and
S.
Balasubramanian
, “
Hydration layer of a cationic micelle, C10TAB: Structure, rigidity, slow reorientation, hydrogen bond lifetime, and solvation dynamics
,”
J. Phys. Chem. B
109
,
12879
12890
(
2005
).
20.
A. A.
Vanin
,
E. M.
Piotrovskaya
, and
N. A.
Smirnova
, “
A molecular dynamics simulation of micellar aggregates in aqueous solutions of hexadecyltrimethylammonium chloride with admixtures of low-molecular-weight substances
,”
Russ. J. Phys. Chem. A
81
,
1256
1262
(
2007
).
21.
M.
Jorge
, “
Molecular dynamics simulation of self-assembly of n-decyltrimethylammonium bromide micelles
,”
Langmuir
24
,
5714
5725
(
2008
).
22.
A. D.
MacKerell
, “
Molecular dynamics simulation analysis of a sodium dodecyl sulfate micelle in aqueous solution: Decreased fluidity of the micelle hydrocarbon Interior
,”
J. Phys. Chem.
99
,
1846
1855
(
1995
).
23.
C. D.
Bruce
,
M. L.
Berkowitz
,
L.
Perera
, and
M. D. E.
Forbes
, “
Molecular dynamics simulation of sodium dodecyl sulfate micelle in water: Micellar structural characteristics and counterion distribution
,”
J. Phys. Chem. B
106
,
3788
3793
(
2002
).
24.
A.
Rakitin
and
G. R.
Pack
, “
Molecular dynamics simulations of ionic interactions with dodecyl sulfate micelles
,”
J. Phys. Chem. B
108
,
2712
2716
(
2004
).
25.
M.
Nedyalkova
,
S.
Madurga
,
S.
Pisov
,
I.
Pastor
,
E.
Vilaseca
, and
F.
Mas
, “
Molecular dynamics simulation of the spherical electrical double layer of a soft nanoparticle: Effect of the surface charge and counterion valence
,”
J. Chem. Phys.
137
,
174701
(
2012
).
26.
E. N.
Brodskaya
, “
Computer simulation of micellar systems
,”
Colloid J.
74
,
154
171
(
2012
).
27.
E. N.
Brodskaya
, “
Role of water in the formation of the electric double layer of micelles
,”
J. Phys. Chem. B
116
,
5795
5800
(
2012
).
28.
D. P.
Tieleman
,
D.
van der Spoel
, and
H. J. C.
Berendsen
, “
Molecular dynamics simulations of dodecylphosphocholine micelles at three different aggregate sizes: Micellar structure and chain relaxation
,”
J. Phys. Chem. B
104
,
6380
6388
(
2000
).
29.
H. J. C.
Berendsen
,
J. R.
Grigera
, and
T. P.
Straatsma
, “
The missing term in effective pair potentials
,”
J. Phys. Chem.
91
,
6269
6271
(
1987
).
30.
H. J. C.
Berendsen
,
J. P. M.
Postma
,
W. F.
van Gunsteren
, and
J.
Hermans
, “
Interaction models for water in relation to protein hydration
,” in
Intermolecular Forces
, edited by
B.
Pullman
(
Reidel
,
Dordrecht
,
1981
), pp.
331
342
.
31.
M. W.
Mahoney
and
W. L.
Jorgensen
, “
A five-site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions
,”
J. Chem. Phys.
112
,
8910
8922
(
2000
).
32.
K. M.
Dyer
,
J. S.
Perkyns
,
G.
Stell
, and
B. M.
Pettitt
, “
Site-renormalised molecular fluid theory: On the utility of a two-site model of water
,”
Mol. Phys.
107
,
423
431
(
2009
).
33.
M.
Chaplin
, Water models, retrieved 21 October 2014 from http://www1.lsbu.ac.uk/water/water_models.html.
34.
D.
van der Spoel
,
P. J.
van Maaren
, and
H. J. C.
Berendsen
, “
A systematic study of water models for molecular simulation: Derivation of water models optimized for use with a reaction field
,”
J. Chem. Phys.
108
,
10220
10230
(
1998
).
35.
N.
Schmid
,
A. P.
Eichenberger
,
A.
Choutko
,
S.
Riniker
,
M.
Winger
,
A. E.
Mark
, and
W. F.
van Gunsteren
, “
Definition and testing of the GROMOS force-field versions 54A7 and 54B7
,”
Eur. Biophys. J.
40
,
843
856
(
2011
).
36.
C.
Oostenbrink
,
A.
Villa
,
A. E.
Mark
, and
W. F.
van Gunsteren
, “
A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force-field parameter sets 53A5 and 53A6
,”
J. Comput. Chem.
25
,
1656
1676
(
2004
).
37.
S. W.
Chiu
,
M.
Clark
,
V.
Balaji
,
S.
Subramaniam
,
H. L.
Scott
, and
E.
Jakobsson
, “
Incorporation of surface tension into molecular dynamics simulation of an interface: A fluid phase lipid bilayer membrane
,”
Biophys. J.
69
,
1230
1245
(
1995
).
38.
D.
Poger
,
W. F.
van Gunsteren
, and
A. E.
Mark
, “
A new force field for simulating phosphatidylcholine bilayers
,”
J. Comput. Chem.
31
,
1117
1125
(
2010
).
39.
B.
Hess
,
C.
Kutzner
,
D.
van der Spoel
, and
E.
Lindahl
, “
GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation
,”
J. Chem. Theory Comput.
4
,
435
447
(
2008
).
40.
U.
Essmann
,
L.
Perera
,
M. L.
Berkowitz
,
T.
Darden
,
H.
Lee
, and
L. G.
Pedersen
, “
A smooth particle mesh Ewald method
,”
J. Chem. Phys.
103
,
8577
8593
(
1995
).
41.
E. N.
Brodskaya
and
V. V.
Zacharov
, “
Computer simulation study of the surface polarization of pure polar liquids
,”
J. Chem. Phys.
102
,
4595
4599
(
1995
).
42.
V. V.
Zakharov
,
E. N.
Brodskaya
, and
A.
Laaksonen
, “
Surface tension of water droplets. A molecular dynamics study of model and size dependencies
,”
J. Chem. Phys.
107
,
10675
(
1997
).
43.
K. D.
Danov
,
P. A.
Kralchevsky
, and
K. P.
Ananthapadmanabhan
, “
Micelle-monomer equilibria in solutions of ionic surfactants and ionic-nonionic mixtures: A generalized phase separation model
,”
Adv. Colloid Interface Sci.
206
,
17
45
(
2014
).
44.
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
, “
VMD - Visual Molecular Dynamics
,”
J. Mol. Graph.
14
,
33
38
(
1996
).
You do not currently have access to this content.