Two-colour polarization labelling experiments have been used to explore the excitation spectrum of the rubidium dimer in the region 25 500–27 000 cm−1, probing two mutually interacting states, identified from ab initio calculations as the 5 1 Σ u + and 51Πu states whose atomic dissociation products are Rb(5s) + Rb(5d). Treating the rather irregular progressions observed in the excitation spectra as transitions to single states with (numerous) local perturbations, we propose spectroscopic parameters and potential energy curves to describe the investigated levels. Observations cover more than 20 vibrational levels in the inner minima of both the 51Πu and 5 1 Σ u + states. Analysis was guided by ab initio calculations performed to describe the 1,3Λg,u electronic states of Rb2 up to the Rb(5s) + Rb(5f) atomic asymptote. The theoretical potential energy curves are given in ASCII format in an electronic supplement to this paper.

1.
S. J.
Park
,
S. W.
Suh
,
Y. S.
Lee
, and
G.-H.
Jeung
,
J. Mol. Spectrosc.
207
,
129
135
(
2001
).
2.
A. R.
Allouche
and
M.
Aubert-Frécon
,
J. Chem. Phys.
136
,
114302
(
2012
).
3.
See supplementary material at http://dx.doi.org/10.1063/1.4927225 for the atomic basis set and cutoff radii employed in the calculations and the complete set of resultingab initio potential energy curves.
4.
C.
Strauss
,
T.
Takekoshi
,
F.
Lang
,
K.
Winkler
,
R.
Grimm
,
J.
Hecker Denschlag
, and
E.
Tiemann
,
Phys. Rev. A
82
,
052514
(
2010
).
5.
M.
Tomza
,
W.
Skomorowski
,
M.
Musial
,
R.
Gonzalez-Ferez
,
C. P.
Koch
, and
R.
Moszynski
,
Mol. Phys.
111
,
1781
1797
(
2013
).
6.
R. J.
Le Roy
, “
Level 8.0: A computer program for solving the Radial Schrödinger equation for bound and quasibound levels
,” University of Waterloo Chemical Physics Research Report CP-663, 2007.
7.
W.
Jastrzȩbski
and
P.
Kowalczyk
,
Phys. Rev. A
51
,
1046
1051
(
1995
).
8.
C.
Amiot
and
J.
Vergès
,
Chem. Phys. Lett.
274
,
91
98
(
1997
).
9.
J. Y.
Seto
,
J.
Le Roy
,
J.
Vergès
, and
C.
Amiot
,
J. Chem. Phys.
113
,
3067
3076
(
2000
).
10.
A.
Pashov
,
W.
Jastrzȩbski
, and
P.
Kowalczyk
,
Chem. Phys. Lett.
292
,
615
620
(
1998
).
11.
A.
Grochola
,
W.
Jastrzebski
,
P.
Kowalczyk
,
P.
Crozet
, and
A. J.
Ross
,
Chem. Phys. Lett.
372
,
173
178
(
2003
).
12.
A.
Grochola
,
P.
Kowalczyk
,
W.
Jastrzebski
, and
A.
Pashov
,
J. Chem. Phys.
121
,
5754
5760
(
2004
).
13.
A.
Adohi-Krou
,
W.
Jastrzebski
,
P.
Kowalczyk
,
A. V.
Stolyarov
, and
A. J.
Ross
,
J. Mol. Spectrosc.
250
,
27
32
(
2008
).
14.
R. J.
Le Roy
,
J. Mol. Spectrosc.
191
,
223
231
(
1998
).
15.
A.
Pashov
,
W.
Jastrzȩbski
, and
P.
Kowalczyk
,
Comput. Phys. Commun.
128
,
622
634
(
2000
).
16.
H.
Lefebvre-Brion
and
R. W.
Field
,
The Spectra and Dynamics of Diatomic Molecules
(
Elsevier
,
Amsterdam
,
2004
), pp.
393
395
.
17.
Y.
Lee
,
S.
Lee
, and
B.
Kim
,
J. Phys. Chem. A
112
,
6893
6901
(
2008
).
18.
C.
Teichteil
,
M.
Pelissier
, and
F.
Spiegelmann
,
Chem. Phys.
81
,
273
282
(
1983
).
19.

This type of l-mixing has been recognized between Rydberg states, arising from a dipole or quadrupole moment in the ion core (pages 214–216 in Ref. 16).

20.
W.
Jastrzebski
,
P.
Kowalczyk
, and
A.
Pashov
,
J. Mol. Spectrosc.
209
,
50
56
(
2001
).
21.
J.
Han
and
M. C.
Heaven
,
J. Mol. Spectrosc.
268
,
37
41
(
2011
).
22.
Y. H.
Lee
,
S. Y.
Lee
, and
B. S.
Kim
,
J. Phys. Chem. A
111
,
11750
11758
(
2007
).
23.
X.
Han
,
J.
Yang
,
Y.
Guan
,
Z.
Zhou
,
W.
Zhao
,
A. R.
Allouche
,
S.
Magnier
,
E. H.
Ahmed
,
A. M.
Lyyra
, and
X.
Dai
,
Chem. Phys. Lett.
601
,
124
127
(
2014
).
24.
A. N.
Drozdova
,
X.
Han
,
X.
Dai
,
G.
Wannous
,
P.
Crozet
, and
A. J.
Ross
,
J. Mol. Spectrosc.
299
,
25
30
(
2014
).
25.
C.
Amiot
,
J. Chem. Phys.
93
,
8591
8604
(
1990
).
26.
Y.
Guan
,
X.
Han
,
J.
Yang
,
Z.
Zhou
,
X.
Dai
,
E. H.
Ahmed
,
A. M.
Lyyra
,
S.
Magnier
,
V. S.
Ivanov
,
A. S.
Skublov
, and
V. B.
Sovkov
,
J. Chem. Phys.
139
,
144303
(
2013
).
27.
Y.
Lee
,
Y.
Yoon
,
S. J.
Baek
,
D. L.
Joo
,
J. S.
Ryu
, and
B.
Kim
,
J. Chem. Phys.
113
,
2116
2123
(
2000
).

Supplementary Material

You do not currently have access to this content.