We have developed a multi-agent quantum Monte Carlo model to describe the spatial dynamics of multiple majority charge carriers during conduction of electric current in the channel of organic field-effect transistors. The charge carriers are treated by a neglect of diatomic differential overlap Hamiltonian using a lattice of hydrogen-like basis functions. The local ionization energy and local electron affinity defined previously map the bulk structure of the transistor channel to external potentials for the simulations of electron- and hole-conduction, respectively. The model is designed without a specific charge-transport mechanism like hopping- or band-transport in mind and does not arbitrarily localize charge. An electrode model allows dynamic injection and depletion of charge carriers according to source-drain voltage. The field-effect is modeled by using the source-gate voltage in a Metropolis-like acceptance criterion. Although the current cannot be calculated because the simulations have no time axis, using the number of Monte Carlo moves as pseudo-time gives results that resemble experimental I/V curves.

1.
J.
Cornil
,
S.
Verlaak
,
N.
Martinelli
,
A.
Mityashin
,
Y.
Olivier
,
T.
Van Regemorter
,
G.
D’Avino
,
L.
Muccioli
,
C.
Zannoni
,
F.
Castet
,
D.
Beljonne
, and
P.
Heremans
,
Acc. Chem. Res.
46
,
434
(
2013
).
2.
R.
Noriega
and
A.
Salleo
, in
Charge Transport Theories in Organic Semiconductors
, edited by
H.
Klauk
(
Wiley-VCH
,
Weinheim
,
2012
).
3.
H.
Bässler
and
A.
Köhler
, in
Unimolecular and Supramolecular Electronics I
, edited by
R. M.
Metzger
(
Springer
,
Berlin, Heidelberg
,
2012
).
4.
R. A.
Marcus
and
N.
Sutin
,
Biochim. Biophys. Acta
811
,
265
(
1985
).
5.
A.
Miller
and
E.
Abrahams
,
Phys. Rev.
120
,
745
(
1960
).
6.
M.
Novak
,
A.
Ebel
,
T.
Meyer-Friedrichsen
,
A.
Jedaa
,
B. F.
Vieweg
,
G.
Yang
,
K.
Voitchovsky
,
F.
Stellacci
,
E.
Spiecker
,
A.
Hirsch
, and
M.
Halik
,
Nano Lett.
11
,
156
(
2011
).
7.
C. M.
Jager
,
T.
Schmaltz
,
M.
Novak
,
A.
Khassanov
,
A.
Vorobiev
,
M.
Hennemann
,
A.
Krause
,
H.
Dietrich
,
D.
Zahn
,
A.
Hirsch
,
M.
Halik
, and
T.
Clark
,
J. Am. Chem. Soc.
135
,
4893
(
2013
).
8.
J. E.
Anthony
,
A.
Facchetti
,
M.
Heeney
,
S. R.
Marder
, and
X.
Zhan
,
Adv. Mater.
22
,
3876
(
2010
).
9.
M.
Halik
,
H.
Klauk
,
U.
Zschieschang
,
G.
Schmid
,
C.
Dehm
,
M.
Schutz
,
S.
Maisch
,
F.
Effenberger
,
M.
Brunnbauer
, and
F.
Stellacci
,
Nature
431
,
963
(
2004
).
10.
M.
Novak
,
C. M.
Jäger
,
A.
Rumpel
,
H.
Kropp
,
W.
Peukert
,
T.
Clark
, and
M.
Halik
,
Org. Electron.
11
,
1476
(
2010
).
11.
T.
Schmaltz
,
A. Y.
Amin
,
A.
Khassanov
,
T.
Meyer-Friedrichsen
,
H. G.
Steinruck
,
A.
Magerl
,
J. J.
Segura
,
K.
Voitchovsky
,
F.
Stellacci
, and
M.
Halik
,
Adv. Mater.
25
,
4511
(
2013
).
12.
J.
Tsurumi
,
A. Y.
Amin
,
T.
Okamoto
,
C.
Mitsui
,
K.
Takimiya
,
H.
Matsui
,
M.
Halik
, and
J.
Takeya
,
Org. Electron.
15
,
1184
(
2014
).
13.
T.
Schmaltz
,
A.
Krause
,
S.
Leitherer
,
C.
Jäger
,
T.
Bauer
,
M.
Thoss
,
T.
Clark
, and
M.
Halik
, “Correlation between chemical structure, morphology and electrical properties of benzothieno[3,2-b][1]benzothiophene-based self-assembled monolayers for transitor applications” (unpublished).
14.
N.
Ehrentreich
,
The Santa Fe Institute Artificial Stock Market Model Revisited
(
Springer
,
Berlin, Heidelberg
,
2008
).
15.
B.
Chen
and
H.
Cheng
,
IEEE Trans. Intell. Transp. Syst.
11
,
485
(
2010
).
16.
E.
Bonabeau
,
Proc. Natl. Acad. Sci. U. S. A.
99
(
Suppl. 3
),
7280
(
2002
).
17.
N. R.
Jennings
,
Artif. Intell.
117
,
277
(
2000
).
18.
T.
Clark
,
K. G.
Byler
, and
M. J.
de Groot
,
Biological Communication via Molecular Surfaces, Proceedings of the International Beilstein Workshop
(
Logos Verlag
,
Berlin
,
2008
).
19.
P.
Sjoberg
,
J. S.
Murray
,
T.
Brinck
, and
P.
Politzer
,
Can. J. Chem.
68
,
1440
(
1990
).
20.
P.
Politzer
,
J. S.
Murray
, and
F. A.
Bulat
,
J. Mol. Model.
16
,
1731
(
2010
).
21.
B.
Ehresmann
,
B.
Martin
,
A. H.
Horn
, and
T.
Clark
,
J. Mol. Model.
9
,
342
(
2003
).
23.
C.
Atienza
,
N.
Martin
,
M.
Wielopolski
,
N.
Haworth
,
T.
Clark
, and
D. M.
Guldi
,
Chem. Commun.
2006
,
3202
.
24.
M.
Kriebel
,
D.
Sharapa
, and
T.
Clark
, “Quantum dynamics on local-property hypersurfaces” (unpublished).
25.
M.
Dewar
,
E.
Zoebisch
,
E.
Healy
, and
J.
Stewart
,
J. Am. Chem. Soc.
107
,
3902
(
1985
).
26.
M.
Hennemann
and
T.
Clark
, EMPIRE, Universität Erlangen-Nürnberg & Cepos InSilico GmbH, Erlangen, 2013; see http://www.ceposinsilico.de.
27.
M.
Hennemann
and
T.
Clark
,
J. Mol. Model.
20
,
2331
(
2014
).
28.
M. J. S.
Dewar
and
W.
Thiel
,
Theor. Chim. Acta
46
,
89
(
1977
).
29.
M. J. S.
Dewar
and
W.
Thiel
,
J. Am. Chem. Soc.
99
,
4899
(
1977
).
30.
J. A.
Pople
and
D. L.
Beveridge
,
Approximate Molecular Orbital Theory
(
McGraw-Hill
,
New York
,
1970
).
31.
A.
Szabo
and
N. S.
Ostlund
,
Modern Quantum Chemistry
(
Dover Publications, Inc.
,
Mineola, NY
,
1996
).
32.
N.
Metropolis
,
A. W.
Rosenbluth
,
M. N.
Rosenbluth
,
A. H.
Teller
, and
E.
Teller
,
J. Chem. Phys.
21
,
1087
(
1953
).
33.
J.
von Neumann
and
O.
Morgenstern
,
Theory of Games and Economic Behavior
, 3rd ed. (
Princeton University Press
,
Princeton
,
1953
).
34.
Y.
Shoham
and
K.
Leyton-Brown
,
Multiagent Systems
(
Cambridge University Press
,
New York
,
2009
).
35.
M.
Hennemann
,
A.
Elkerdawy
, and
T.
Clark
, VWF2cube, Universität Erlangen-Nürnberg & Cepos InSilico GmbH, Erlangen, 2013; see http://www.ceposinsilico.de.
36.
CRC Handbook of Chemistry and Physics
, 93rd ed., edited by
W. M.
Haynes
(
Taylor and Francis Group
,
2013
), see online at http://www.hbcpnetbase.com.
37.
S.
Leitherer
,
C. M.
Jager
,
M.
Halik
,
T.
Clark
, and
M.
Thoss
,
J. Chem. Phys.
140
,
204702
(
2014
).
38.
T. E.
Shubina
,
D. I.
Sharapa
,
C.
Schubert
,
D.
Zahn
,
M.
Halik
,
P. A.
Keller
,
S. G.
Pyne
,
S.
Jennepalli
,
D. M.
Guldi
, and
T.
Clark
,
J. Am. Chem. Soc.
136
,
10890
(
2014
).
39.
D.
Braess
,
Unternehmensforschung
12
,
258
(
1968
).
40.
N.
Koch
,
A.
Elschner
,
R. L.
Johnson
, and
J. P.
Rabe
,
Appl. Surf. Sci.
244
,
593
(
2005
).
41.
See supplementary material at http://dx.doi.org/10.1063/1.4927397 for capacitance plots covering the whole range of source-drain voltage, images of the evolution of the agent distribution in a simulation run, and images of the structure of the OFET channel.

Supplementary Material

You do not currently have access to this content.