We present first-principles calculations of the sticking coefficient of O2 at Pd(100) to assess the effect of phononic energy dissipation on this kinetic parameter. For this, we augment dynamical simulations on six-dimensional potential energy surfaces (PESs) representing the molecular degrees of freedom with various effective accounts of surface mobility. In comparison to the prevalent frozen-surface approach, energy dissipation is found to qualitatively affect the calculated sticking curves. At the level of a generalized Langevin oscillator model, we achieve good agreement with experimental data. The agreement is similarly reached for PESs based on two different semi-local density-functional theory functionals. This robustness of the simulated sticking curve does not extend to the underlying adsorption mechanism, which is predominantly directly dissociative for one functional or molecularly trapped for the other. Completely different adsorption mechanisms therewith lead to rather similar sticking curves that agree equally well with the experimental data. This highlights the danger of the prevalent practice to extract corresponding mechanistic details from simple fingerprints of measured sticking data for such exothermic surface reactions.

1.
M.
Morris
,
M.
Bowker
, and
D. A.
King
, in
Simple Processes at the Gas-Solid Interface
,
Comprehensive Chemical Kinetics
Vol.
19
, edited by
C. H.
Bamford
,
C. F. H.
Tipper
, and
R. G.
Compton
(
Elsevier
,
1984
), pp.
1
179
.
2.
M. K.
Sabbe
,
M.-F.
Reyniers
, and
K.
Reuter
,
Catal. Sci. Technol.
2
,
2010
(
2012
).
3.
L.
Vattuone
,
G.
Bracco
,
M.
Smerieri
,
L.
Savio
, and
M.
Rocca
, in
Dynamics of Gas-Surface Interactions
,
Springer Series in Surface Sciences
Vol.
50
, edited by
R. D.
Muiño
and
H. F.
Busnengo
(
Springer
,
2013
), pp.
1
23
.
4.
P. D.
Nolan
,
M. C.
Wheeler
,
J. E.
Davis
, and
C. B.
Mullins
,
Acc. Chem. Res.
31
,
798
(
1998
).
5.
J.
Davis
and
C.
Mullins
,
Surf. Sci.
380
,
L513
(
1997
).
6.
M.
Alducin
,
R.
Díez Muiño
,
H. F.
Busnengo
, and
A.
Salin
,
Phys. Rev. Lett.
97
,
056102
(
2006
).
7.
A.
Gross
,
ChemPhysChem
11
,
1374
(
2010
).
8.
J.
Meyer
and
K.
Reuter
,
Angew. Chem., Int. Ed.
53
,
4721
(
2014
).
9.
M.
Hand
and
J.
Harris
,
J. Chem. Phys.
92
,
7610
(
1990
).
10.
S. A.
Adelman
and
J. D.
Doll
,
J. Chem. Phys.
64
,
2375
(
1976
).
11.
J. C.
Tully
,
J. Chem. Phys.
73
,
6333
(
1980
).
12.
J. C.
Polanyi
and
R. J.
Wolf
,
J. Chem. Phys.
82
,
1555
(
1985
).
13.
A.
Gross
, “
Ab initio molecular dynamics simulations of the O2/Pt(1ߙ1ߙ1) interaction
,”
Catal. Today
(in press).
14.
A.
den Dunnen
,
S.
Wiegman
,
L.
Jacobse
, and
L. B. F.
Juurlink
,
J. Chem. Phys.
142
,
214708
(
2015
).
15.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
16.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
78
,
1396
(
1997
).
17.
B.
Hammer
,
L.
Hansen
, and
J. K.
Nørskov
,
Phys. Rev. B
59
,
7413
(
1999
).
18.
S. J.
Clark
,
M. D.
Segall
,
C. J.
Pickard
,
P. J.
Hasnip
,
M. I. J.
Probert
, and
M. C.
Payne
,
Z. Kristallogr.
220
,
567
(
2005
).
19.
D.
Vanderbilt
,
Phys. Rev. B
41
,
7892
(
1990
).
20.
V.
Blum
,
R.
Gehrke
,
F.
Hanke
,
P.
Havu
,
V.
Havu
,
X.
Ren
,
K.
Reuter
, and
M.
Scheffler
,
Comput. Phys. Commun.
180
,
2175
(
2009
).
21.
M.
Fuchs
,
M.
Bockstedte
,
E.
Pehlke
, and
M.
Scheffler
,
Phys. Rev. B
57
,
2134
(
1998
).
22.
A.
Kiejna
,
G.
Kresse
,
J.
Rogal
,
A. D.
Sarkar
,
K.
Reuter
, and
M.
Scheffler
,
Phys. Rev. B
73
,
035404
(
2006
).
23.
J.
Meyer
, “
Ab initio modeling of energy dissipation during chemical reactions at transition metal surfaces
,” Ph.D. thesis,
Freie Universität Berlin
, Germany (
2012
).
24.
H. J.
Monkhorst
and
J. D.
Pack
,
Phys. Rev. B
13
,
5188
(
1976
).
25.
J.
Behler
,
S.
Lorenz
, and
K.
Reuter
,
J. Chem. Phys.
127
,
014705
(
2007
).
26.
I.
Goikoetxea
,
J.
Beltrán
,
J.
Meyer
,
M.
Alducin
,
J. I.
Juaristi
, and
K.
Reuter
,
New J. Phys.
14
,
013050
(
2012
).
27.
V. J.
Bukas
,
J.
Meyer
,
M.
Alducin
, and
K.
Reuter
,
Z. Phys. Chem.
227
,
1523
(
2013
).
28.
J.
Meyer
and
K.
Reuter
,
New J. Phys.
13
,
085010
(
2011
).
29.
See supplementary material at http://dx.doi.org/10.1063/1.4926989 for details on the quality of the continuous PES representations obtained on the level of PBE and RPBE-DFT.
30.
S. R.
Bahn
and
K. W.
Jacobsen
,
Comput. Sci. Eng.
4
,
56
(
2002
).
31.
B. W.
Veal
and
J. A.
Rayne
,
Phys. Rev.
135
,
A442
(
1964
).
32.
H. F.
Busnengo
,
W.
Dong
,
P.
Sautet
, and
A.
Salin
,
Phys. Rev. Lett.
87
,
127601
(
2001
).
33.
H. F.
Busnengo
,
W.
Dong
, and
A.
Salin
,
Phys. Rev. Lett.
93
,
236103
(
2004
).
34.
H. F.
Busnengo
,
M. A.
Di Césare
,
W.
Dong
, and
A.
Salin
,
Phys. Rev. B
72
,
125411
(
2005
).
35.
D.-J.
Liu
and
J. W.
Evans
,
Phys. Rev. B
89
,
205406
(
2014
).
36.
K.
Reuter
and
M.
Scheffler
,
Phys. Rev. B
73
,
045433
(
2006
).
37.
J.
Rogal
,
K.
Reuter
, and
M.
Scheffler
,
Phys. Rev. Lett.
98
,
046101
(
2007
).
38.
J.
Rogal
,
K.
Reuter
, and
M.
Scheffler
,
Phys. Rev. B
77
,
155410
(
2008
).
39.
J.
Behler
,
B.
Delley
,
S.
Lorenz
,
K.
Reuter
, and
M.
Scheffler
,
Phys. Rev. Lett.
94
,
036104
(
2005
).
40.
F.
Libisch
,
C.
Huang
,
P.
Liao
,
M.
Pavone
, and
E. A.
Carter
,
Phys. Rev. Lett.
109
,
198303
(
2012
).
41.
C.
Carbogno
,
A.
Gross
,
J.
Meyer
, and
K.
Reuter
, in
Dynamics of Gas-Surface Interactions
,
Springer Series in Surface Sciences
Vol.
50
, edited by
R. D.
Muiño
and
H. F.
Busnengo
(
Springer
,
2013
), pp.
389
419
.
42.
G. A.
Bocan
,
R.
Díez Muiño
,
M.
Alducin
,
H. F.
Busnengo
, and
A.
Salin
,
J. Chem. Phys.
128
,
154704
(
2008
).
43.
D.-J.
Liu
,
A.
Garcia
,
J.
Wang
,
D. M.
Ackerman
,
C.-J.
Wang
, and
J. W.
Evans
,
Chem. Rev.
115
,
5979
(
2015
).

Supplementary Material

You do not currently have access to this content.