The basic science responsible for the fascinating shapes of ice crystals and snowflakes is still not understood. Insufficient knowledge of the interaction potentials and the lack of relevant experimental access to the growth process are to blame for this failure. Here, we study the growth of fractal nanostructures in a two-dimensional (2D) system, intercalated between mica and graphene. Based on our scanning tunneling spectroscopy data, we provide compelling evidence that these fractals are 2D ice. They grow while they are in material contact with the atmosphere at 20 °C and without significant thermal contact to the ambient. The growth is studied in situ, in real time and space at the nanoscale. We find that the growing 2D ice nanocrystals assume a fractal shape, which is conventionally attributed to Diffusion Limited Aggregation (DLA). However, DLA requires a low mass density mother phase, in contrast to the actual currently present high mass density mother phase. Latent heat effects and consequent transport of heat and molecules are found to be key ingredients for understanding the evolution of the snow (ice) flakes. We conclude that not the local availability of water molecules (DLA), but rather them having the locally required orientation is the key factor for incorporation into the 2D ice nanocrystal. In combination with the transport of latent heat, we attribute the evolution of fractal 2D ice nanocrystals to local temperature dependent rotation limited aggregation. The ice growth occurs under extreme supersaturation, i.e., the conditions closely resemble the natural ones for the growth of complex 2D snow (ice) flakes and we consider our findings crucial for solving the “perennial” snow (ice) flake enigma.

1.
K. G.
Libbrecht
, “
The enigmatic snowflake
,”
Phys. World
21
(
1
),
19
23
(
2008
).
2.
K. G.
Libbrecht
, “
The physics of snow crystals
,”
Rep. Prog. Phys.
68
,
855
895
(
2005
).
3.
A.
Verdaguer
,
G.
Sacha
,
H.
Bluhm
, and
M.
Salmeron
, “
Molecular structure of water at interfaces: Wetting at the nanometer scale
,”
Chem. Rev.
106
,
1478
1510
(
2006
).
4.
P. J.
Feibelman
, “
The first wetting layer on a solid
,”
Phys. Today
63
(
2
),
34
39
(
2010
).
5.
P. A.
Thiel
and
T. E.
Madey
, “
The interaction of water with solid surfaces—Fundamental aspects
,”
Surf. Sci. Rep.
7
,
211
385
(
1987
).
6.
T. A.
Witten
and
I. M.
Sander
, “
Diffusion-limited aggregation, a kinetic critical phenomenon
,”
Phys. Rev. Lett.
47
,
1400
1403
(
1981
).
7.
J. S.
Langer
, “
Instabilities and pattern formation in crystal growth
,”
Rev. Mod. Phys.
52
,
1
(
1980
).
8.
K.
Xu
,
P.
Cao
, and
J. R.
Heath
, “
Graphene visualizes the first water adlayers on mica at ambient conditions
,”
Science
329
,
1188
1191
(
2010
).
9.
N.
Severin
,
P.
Lange
,
I.
Sokolov
, and
J. P.
Rabe
, “
Reversible dewetting of a molecularly thin fluid water film in a soft graphene–mica slit pore
,”
Nano Lett.
12
,
774
779
(
2012
).
10.
J.
Song
 et al, “
Evidence of Stranski–Krastanov growth at the initial stage of atmospheric water condensation
,”
Nat. Commun.
5
,
4837
(
2014
).
11.
K. T.
He
,
J. D.
Wood
,
G. P.
Doidge
,
E.
Pop
, and
J. W.
Lyding
, “
Scanning tunneling microscopy study and nanomanipulation of graphene-coated water on mica
,”
Nano Lett.
12
,
2665
2672
(
2012
).
12.
M.
Temmen
,
O.
Ochedowski
,
M.
Schleberger
,
M.
Reichling
, and
T. R. J.
Bollmann
, “
Hydration layers trapped between graphene and a hydrophilic substrate
,”
New J. Phys.
16
,
053039
(
2014
).
13.
O.
Ochedowski
,
B. K.
Bussmann
, and
M.
Schleberger
, “
Graphene on mica–intercalated water trapped for life
,”
Sci. Rep.
4
,
6003
(
2014
).
14.
H.
Li
and
X. C.
Zeng
, “
Two dimensional epitaxial water adlayer on mica with graphene coating: An ab initio molecular dynamics study
,”
J. Chem. Theory Comput.
8
,
3034
3043
(
2012
).
15.
Q.
Li
,
J.
Song
,
F.
Besenbacher
, and
M.
Dong
, “
Two-dimensional material confined water
,”
Acc. Chem. Res.
48
(
1
),
119
127
(
2015
).
16.
G.
Algara-Siller
 et al, “
Square ice in graphene nanocapillaries
,”
Nature
519
,
443
445
(
2015
).
17.
J. O.
Varghese
 et al, “
The influence of water on the optical properties of single-layer molybdenum disulfide
,”
Adv. Mater.
27
(
17
),
2734
(
2015
).
18.
J. S.
Kim
 et al, “
Between scylla and charybdis: Hydrophobic graphene-guided water diffusion on hydrophilic substrates
,”
Sci. Rep.
3
,
2309
(
2013
).
19.
B.
Rezania
,
M.
Dorn
,
N.
Severin
, and
J. P.
Rabe
, “
Influence of graphene exfoliation on the properties of water-containing adlayers visualized by graphenes and scanning force microscopy
,”
J. Colloid Interface Sci.
407
,
500
504
(
2013
).
20.
M.
Dorn
,
P.
Lange
,
A.
Chekushin
,
N.
Severin
, and
J. P.
Rabe
, “
High contrast optical detection of single graphenes on optically transparent substrates
,”
J. Appl. Phys.
108
,
106101
(
2010
).
21.
E.
Pop
,
V.
Varshney
, and
A. K.
Roy
, “
Thermal properties of graphene: Fundamentals and applications
,”
MRS Bull.
37
,
1273
1281
(
2012
).
22.
A. S.
Gray
and
C.
Uher
, “
Thermal conductivity of mica at low temperatures
,”
J. Mater. Sci.
12
,
959
965
(
1977
).
23.
See supplementary material at http://dx.doi.org/10.1063/1.4926467 for (1) epitaxial 2D-water on mica, (2) nanomanipulation of the fractal’s environment, and (3) transfer of cold to the double bilayer of intercalated water.
24.
M.
Odelius
,
M.
Bernasconi
, and
M.
Parrinello
, “
Two dimensional ice adsorbed on mica surface
,”
Phys. Rev. Lett.
78
,
2855
(
1997
).
25.
A. N.
Rudenko
,
F. J.
Keil
,
M. I.
Katsnelson
, and
A. I.
Lichtenstein
, “
Graphene adhesion on mica: Role of surface morphology
,”
Phys. Rev. B
83
,
045409
(
2011
).
26.
O.
Leenaerts
,
B.
Partoens
, and
F. M.
Peeters
, “
Water on graphene: Hydrophobicity and dipole moment using density functional theory
,”
Phys. Rev. B
79
,
235440
(
2009
).
27.
H.
Bluhm
,
T.
Inoue
, and
M.
Salmeron
, “
Formation of dipole-oriented water films on mica substrates at ambient conditions
,”
Surf. Sci.
462
,
L599
L602
(
2000
).
28.
J. A.
Venables
,
Introduction to Surface and Thin Film Processes
(
Cambridge University Press
,
2000
).
29.
P. L.
Kapitza
,
Zh. Eksperim i. Teor. Fiz.
11
,
1
(
1941
)
[
P. L.
Kapitza
“The study of heat transfer in helium II
,”
J. Phys. USSR
4
,
181
(
1941
)].
30.
H.
Prask
,
H.
Boutin
, and
S.
Yip
, “
Frequency spectrum of hydrogenous molecular solids by inelastic neutron scattering. Hexagonal H2O ice
,”
J. Chem. Phys.
48
,
8
(
1968
).
31.
M.
Hohage
 et al, “
Atomic processes in low temperature Pt-dendrite growth on Pt(111)
,”
Phys. Rev. Lett.
76
,
25
28
(
1996
).
32.
M. C.
Bartelt
and
J. W.
Evans
, “
Dendritic islands in metal-on-metal epitaxy I. Shape transitions and diffusion at island edges
,”
Surf. Sci. Lett.
314
,
L829
(
1994
).
33.
J. W. M.
Frenken
and
J. F.
van der Veen
, “
Observation of surface melting
,”
Phys. Rev. Lett.
54
,
134
(
1985
).
34.
C. S.
Jayanthi
,
E.
Tosatti
, and
L.
Pietronero
, “
Surface melting of copper
,”
Phys. Rev. B
31
,
3456
(
1985
).
35.

The melting of 3D crystals often goes through a stage of surface (2D) melting.33,34 In analogy, one may presume that the 1D borders of 2D crystallites also melt before the 2D “bulk” does.

Supplementary Material

You do not currently have access to this content.