We estimate the prediction sensitivity with respect to Hartree-Fock exchange in approximate density functionals for representative Fe(II) and Fe(III) octahedral complexes. Based on the observation that the range of parameters spanned by the most widely employed functionals is relatively narrow, we compute electronic structure property and spin-state orderings across a relatively broad range of Hartree-Fock exchange (0%-50%) ratios. For the entire range considered, we consistently observe linear relationships between spin-state ordering that differ only based on the element of the direct ligand and thus may be broadly employed as measures of functional sensitivity in predictions of organometallic compounds. The role Hartree-Fock exchange in hybrid functionals is often assumed to play is to correct self-interaction error-driven electron delocalization (e.g., from transition metal centers to neighboring ligands). Surprisingly, we instead observe that increasing Hartree-Fock exchange reduces charge on iron centers, corresponding to effective delocalization of charge to ligands, thus challenging notions of the role of Hartree-Fock exchange in shifting predictions of spin-state ordering.

1.
K.
Burke
,
J. Chem. Phys.
136
,
150901
(
2012
).
2.
M.
Swart
,
F. M.
Bickelhaupt
, and
M.
Duran
, Popularity Poll of DFT Functionals, 2014, http://www.marcelswart.eu/dft-poll.
3.
Y.
Zhao
and
D. G.
Truhlar
,
Chem. Phys. Lett.
502
,
1
(
2011
).
4.
N.
Mardirossian
and
M.
Head-Gordon
,
Phys. Chem. Chem. Phys.
16
,
9904
(
2014
).
5.
C.
Adamo
and
V.
Barone
,
J. Chem. Phys.
110
,
6158
(
1999
).
6.
M.
Ernzerhof
and
G. E.
Scuseria
,
J. Chem. Phys.
110
,
5029
(
1999
).
7.
L. A.
Curtiss
,
K.
Raghavachari
,
P. C.
Redfern
, and
J. A.
Pople
,
J. Chem. Phys.
106
,
1063
(
1997
).
8.
A. J.
Cohen
,
P.
Mori-Sánchez
, and
W.
Yang
,
Science
321
,
792
(
2008
).
9.
C. J.
Cramer
and
D. G.
Truhlar
,
Phys. Chem. Chem. Phys.
11
,
10757
(
2009
).
10.
M. C.
Gutzwiller
,
Phys. Rev.
134
,
A923
(
1964
).
11.
J. N.
Harvey
,
Annu. Rep. Prog. Chem., Sect. C: Phys. Chem.
102
,
203
(
2006
).
12.
S.
Lutfalla
,
V.
Shapovalov
, and
A. T.
Bell
,
J. Chem. Theory Comput.
7
,
2218
(
2011
).
13.
K. P.
Jensen
and
U.
Ryde
,
J. Biol. Chem.
279
,
14561
(
2004
).
14.
A.
Jain
,
G.
Hautier
,
S. P.
Ong
,
C. J.
Moore
,
C. C.
Fischer
,
K. A.
Persson
, and
G.
Ceder
,
Phys. Rev. B
84
,
045115
(
2011
).
15.
J. N.
Harvey
,
R.
Poli
, and
K. M.
Smith
,
Coord. Chem. Rev.
238
,
347
(
2003
).
16.
P.
Gütlich
and
A.
Hauser
,
Coord. Chem. Rev.
97
,
1
(
1990
).
17.
H.-J.
Lin
,
D.
Siretanu
,
D. A.
Dickie
,
D.
Subedi
,
J. J.
Scepaniak
,
D.
Mitcov
,
R.
Clérac
, and
J. M.
Smith
,
J. Am. Chem. Soc.
136
,
13326
(
2014
).
18.
P.
Gütlich
and
H. A.
Goodwin
,
Spin Crossover in Transition Metal Compounds I
(
Springer Science & Business Media
,
2004
).
19.
J. A.
Real
,
E.
Andrés
,
M. C.
Muñoz
,
M.
Julve
,
T.
Granier
,
A.
Bousseksou
, and
F.
Varret
,
Science
268
,
265
(
1995
).
20.
L.
Bogani
and
W.
Wernsdorfer
,
Nat. Mater.
7
,
179
(
2008
).
21.
S.
Sanvito
,
Chem. Soc. Rev.
40
,
3336
(
2011
).
22.
D.
Schröder
,
S.
Shaik
, and
H.
Schwarz
,
Acc. Chem. Res.
33
,
139
(
2000
).
23.
R.
Poli
and
J. N.
Harvey
,
Chem. Soc. Rev.
32
,
1
(
2003
).
24.
Y. H.
Kwon
,
B. K.
Mai
,
Y.-M.
Lee
,
S. N.
Dhuri
,
D.
Mandal
,
K.-B.
Cho
,
Y.
Kim
,
S.
Shaik
, and
W.
Nam
,
J. Phys. Chem. Lett.
6
,
1472
(
2015
).
25.
K.
Yoshizawa
,
Y.
Shiota
, and
T.
Yamabe
,
Chem. Eur. J.
3
,
1160
(
1997
).
26.
Y.
Shiota
and
K.
Yoshizawa
,
J. Am. Chem. Soc.
122
,
12317
(
2000
).
27.
M.
Filatov
and
S.
Shaik
,
J. Phys. Chem. A
102
,
3835
(
1998
).
28.
H. J.
Kulik
and
N.
Marzari
,
J. Chem. Phys.
129
,
134314
(
2008
).
29.
H. J.
Kulik
,
M.
Cococcioni
,
D. A.
Scherlis
, and
N.
Marzari
,
Phys. Rev. Lett.
97
,
103001
(
2006
).
30.
H. J.
Kulik
and
N.
Marzari
, in
Fuel Cell Science: Theory, Fundamentals, and Bio-Catalysis
, edited by
J.
Norskov
and
A.
Wiezcowski
(
Wiley Monograph
,
2010
), p.
433
.
31.
A.
Droghetti
,
D.
Alfè
, and
S.
Sanvito
,
J. Chem. Phys.
137
,
124303
(
2012
).
32.
G.
Ganzenmüller
,
N.
Berkaïne
,
A.
Fouqueau
,
M. E.
Casida
, and
M.
Reiher
,
J. Chem. Phys.
122
,
234321
(
2005
).
33.
S. R.
Mortensen
and
K. P.
Kepp
,
J. Phys. Chem. A
119
,
4041
(
2015
).
34.
S.
Zein
,
S. A.
Borshch
,
P.
Fleurat-Lessard
,
M. E.
Casida
, and
H.
Chermette
,
J. Chem. Phys.
126
,
014105
(
2007
).
35.
M.
Swart
,
A. R.
Groenhof
,
A. W.
Ehlers
, and
K.
Lammertsma
,
J. Phys. Chem. A
108
,
5479
(
2004
).
36.
M. R.
Pederson
,
A.
Ruzsinszky
, and
J. P.
Perdew
,
J. Chem. Phys.
140
,
121103
(
2014
).
37.
J. P.
Perdew
and
A.
Zunger
,
Phys. Rev. B
23
,
5048
(
1981
).
38.
K. P.
Jensen
and
J.
Cirera
,
J. Phys. Chem. A
113
,
10033
(
2009
).
39.
T. F.
Hughes
and
R. A.
Friesner
,
J. Chem. Theory Comput.
7
,
19
(
2010
).
40.
F.
Neese
,
JBIC, J. Biol. Inorg. Chem.
11
,
702
(
2006
).
41.
H.
Paulsen
,
V.
Schünemann
, and
J. A.
Wolny
,
Eur. J. Inorg. Chem.
2013
,
628
.
42.
H. J.
Kulik
,
J. Chem. Phys.
142
,
240901
(
2015
).
43.
A.
Ghosh
,
B. J.
Persson
, and
P.
Taylor
,
JBIC, J. Biol. Inorg. Chem.
8
,
507
(
2003
).
44.
F.
Aquilante
,
P.-Å.
Malmqvist
,
T. B.
Pedersen
,
A.
Ghosh
, and
B. O.
Roos
,
J. Chem. Theory Comput.
4
,
694
(
2008
).
45.
A.
Ghosh
,
E.
Gonzalez
,
E.
Tangen
, and
B. O.
Roos
,
J. Phys. Chem. A
112
,
12792
(
2008
).
46.
K.
Pierloot
and
S.
Vancoillie
,
J. Chem. Phys.
128
,
034104
(
2008
).
47.
M.
Radoń
,
E.
Broclawik
, and
K.
Pierloot
,
J. Phys. Chem. B
114
,
1518
(
2010
).
48.
S.
Vancoillie
,
H.
Zhao
,
M.
Radoń
, and
K.
Pierloot
,
J. Chem. Theory Comput.
6
,
576
(
2010
).
49.
L. M.
Lawson Daku
,
F.
Aquilante
,
T. W.
Robinson
, and
A.
Hauser
,
J. Chem. Theory Comput.
8
,
4216
(
2012
).
50.
A.
Vargas
,
I.
Krivokapic
,
A.
Hauser
, and
L. M.
Lawson Daku
,
Phys. Chem. Chem. Phys.
15
,
3752
(
2013
).
51.
52.
M.
Reiher
,
O.
Salomon
, and
B. A.
Hess
,
Theor. Chem. Acc.
107
,
48
(
2001
).
53.
A.
Fouqueau
,
S.
Mer
,
M. E.
Casida
,
L. M.
Lawson Daku
,
A.
Hauser
,
T.
Mineva
, and
F.
Neese
,
J. Chem. Phys.
120
,
9473
(
2004
).
54.
A.
Fouqueau
,
M. E.
Casida
,
L. M. L.
Daku
,
A.
Hauser
, and
F.
Neese
,
J. Chem. Phys.
122
,
044110
(
2005
).
55.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
).
56.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
57.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
58.
P. J.
Stephens
,
F. J.
Devlin
,
C. F.
Chabalowski
, and
M. J.
Frisch
,
J. Phys. Chem.
98
,
11623
(
1994
).
59.
J.
Toulouse
,
F.
Colonna
, and
A.
Savin
,
Phys. Rev. A
70
,
062505
(
2004
).
60.
T.
Stein
,
J.
Autschbach
,
N.
Govind
,
L.
Kronik
, and
R.
Baer
,
J. Phys. Chem. Lett.
3
,
3740
(
2012
).
61.
R.
Baer
,
E.
Livshits
, and
U.
Salzner
,
Annu. Rev. Phys. Chem.
61
,
85
(
2010
).
62.
J. H.
Skone
,
M.
Govoni
, and
G.
Galli
,
Phys. Rev. B
89
,
195112
(
2014
).
63.
T.
Weymuth
and
M.
Reiher
,
Int. J. Quantum Chem.
115
,
90
(
2015
).
64.
See http://www.petachem.com for PetaChem.
65.
S.
Vosko
,
L.
Wilk
, and
M.
Nusair
,
Can. J. Phys.
58
,
1200
(
1980
).
66.
J. P.
Perdew
,
Phys. Rev. B
33
,
8822
(
1986
).
67.
J. P.
Perdew
and
Y.
Wang
,
Phys. Rev. B
45
,
13244
(
1992
).
68.
A. D.
Becke
,
J. Chem. Phys.
107
,
8554
(
1997
).
69.
J.
Kästner
,
J. M.
Carr
,
T. W.
Keal
,
W.
Thiel
,
A.
Wander
, and
P.
Sherwood
,
J. Phys. Chem. A
113
,
11856
(
2009
).
70.
E. D.
Glendening
,
J. K.
Badenhoop
,
A. E.
Reed
,
J. E.
Carpenter
,
J. A.
Bohmann
,
C. M.
Morales
,
C. R.
Landis
, and
F.
Weinhold
, NBO6.0., Theoretical Chemistry Institute, University of Wisconsin, Madison, 2013.
71.
A. E.
Reed
,
R. B.
Weinstock
, and
F.
Weinhold
,
J. Chem. Phys.
83
,
735
(
1985
).
72.
D.
Weininger
,
J. Chem. Inf. Comput. Sci.
28
,
31
(
1988
).
73.
N.
O’Boyle
,
M.
Banck
,
C.
James
,
C.
Morley
,
T.
Vandermeersch
, and
G.
Hutchison
,
J. Cheminform.
3
,
33
(
2011
).
74.
F. H.
Allen
,
Acta Crystallogr., Sect. B: Struct. Sci.
58
,
380
(
2002
).
75.
H. J.
Kulik
,
S. E.
Wong
,
S. E.
Baker
,
C. A.
Valdez
,
J.
Satcher
,
R. D.
Aines
, and
F. C.
Lightstone
,
Acta Crystallogr., Sect. C: Struct. Chem.
70
,
123
(
2014
).
76.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
77.
Y.
Zhao
and
D. G.
Truhlar
,
J. Chem. Phys.
125
,
194101
(
2006
).
78.
A.
Sorkin
,
M. A.
Iron
, and
D. G.
Truhlar
,
J. Chem. Theory Comput.
4
,
307
(
2008
).
79.
F.
Furche
and
J. P.
Perdew
,
J. Chem. Phys.
124
,
044103
(
2006
).
80.
D. N.
Bowman
and
E.
Jakubikova
,
Inorg. Chem.
51
,
6011
(
2012
).
81.
J.
Tao
,
J. P.
Perdew
,
V. N.
Staroverov
, and
G. E.
Scuseria
,
Phys. Rev. Lett.
91
,
146401
(
2003
).
82.
C.
Anthon
and
C. E.
Schäffer
,
Coord. Chem. Rev.
226
,
17
(
2002
).
83.
C.
Anthon
,
J.
Bendix
, and
C. E.
Schäffer
,
Inorg. Chem.
42
,
4088
(
2003
).
84.
J.
Moens
,
G.
Roos
,
P.
Jaque
,
F.
De Proft
, and
P.
Geerlings
,
Chem. Eur. J.
13
,
9331
(
2007
).
85.
W.
Moffitt
and
C.
Ballhausen
,
Annu. Rev. Phys. Chem.
7
,
107
(
1956
).
86.
A.
Kramida
,
Y.
Ralchenko
,
J.
Reader
, and
The NIST ASD Team
, NIST: Atomic Spectra Database, NIST, 2014.
87.
P.
Gütlich
,
Y.
Garcia
, and
H. A.
Goodwin
,
Chem. Soc. Rev.
29
,
419
(
2000
).
You do not currently have access to this content.