The description of charge transfer excitations has long been a challenge to time dependent density functional theory. The recently developed concept of “optimally tuned range separated hybrid (OT-RSH) functionals” has proven to describe charge transfer excitations accurately in many cases. However, describing solvated or embedded systems is yet a challenge. This challenge is not only computational but also conceptual, because the tuning requires identifying a specific orbital, typically the highest occupied one of the molecule under study. For solvated molecules, this orbital may be delocalized over the solvent. We here demonstrate that one way of overcoming this problem is to use a locally projected self-consistent field diagonalization on an absolutely localized molecular orbital expansion. We employ this approach to determine ionization energies and the optical gap of solvated oligothiophenes, i.e., paradigm low gap systems that are of relevance in organic electronics. Dioxane solvent molecules are explicitly represented in our calculations, and the ambiguities of straightforward parameter tuning in solution are elucidated. We show that a consistent estimate of the optimal range separated parameter (ω) at the limit of bulk solvation can be obtained by gradually extending the solvated system. In particular, ω is influenced by the solvent beyond the first coordination sphere. For determining ionization energies, a considerable number of solvent molecules on the first solvation shell must be taken into account. We demonstrate that accurately calculating optical gaps of solvated systems using OT-RSH can be done in three steps: (i) including the chemical environment when determining the range-separation parameter, (ii) taking into account the screening due to the solvent, and (iii) using realistic molecular geometries.

1.
G.
Yu
,
J.
Gao
,
J. C.
Hummelen
,
F.
Wudl
, and
A. J.
Heeger
,
Science
270
,
1789
(
1995
).
2.
C. J.
Brabec
,
Sol. Energy Mater. Sol. Cells
83
,
273
(
2004
).
3.
D.
Niedzialek
,
I.
Duchemin
,
T. B.
de Queiroz
,
S.
Osella
,
A.
Rao
,
R.
Friend
,
X.
Blase
,
S.
Kümmel
, and
D.
Beljonne
,
Adv. Funct. Mater.
25
,
1972
(
2015
).
4.
M.
Scharber
,
D.
Mühlbacher
,
M.
Koppe
,
P.
Denk
,
C.
Waldauf
,
A.
Heeger
, and
C.
Brabec
,
Adv. Mater.
18
,
789
(
2006
).
5.
E.
Runge
and
E. K. U.
Gross
,
Phys. Rev. Lett.
52
,
997
(
1984
).
6.
D.
Rappoport
and
F.
Furche
,
J. Am. Chem. Soc.
126
,
1277
(
2004
).
7.
K.
Burke
,
J.
Werschnik
, and
E. K. U.
Gross
,
J. Chem. Phys.
123
,
062206
(
2005
).
8.
Time-Dependent Density Functional Theory
, edited by
M.
Marques
,
C.
Ullrich
,
F.
Nogueira
,
A.
Rubio
,
K.
Burke
, and
E.
Gross
(
Springer
,
Berlin
,
2006
).
9.
A.
Dreuw
,
J. L.
Weisman
, and
M.
Head-Gordon
,
J. Chem. Phys.
119
,
2943
(
2003
).
10.
D. J.
Tozer
,
J. Chem. Phys.
119
,
12697
(
2003
).
11.
12.
J. P.
Perdew
,
R. G.
Parr
,
M.
Levy
, and
J. L.
Balduz
, Jr.
,
Phys. Rev. Lett.
49
,
1691
(
1982
).
13.
M.
Mundt
and
S.
Kümmel
,
Phys. Rev. Lett.
95
,
203004
(
2005
).
14.
M.
Hellgren
and
E. K. U.
Gross
,
Phys. Rev. A
85
,
022514
(
2012
).
15.
S. J. A.
van Gisbergen
,
P. R. T.
Schipper
,
O. V.
Gritsenko
,
E. J.
Baerends
,
J. G.
Snijders
,
B.
Champagne
, and
B.
Kirtman
,
Phys. Rev. Lett.
83
,
694
(
1999
).
16.
A.
Karolewski
,
R.
Armiento
, and
S.
Kümmel
,
J. Chem. Theory Comput.
5
,
712
(
2009
).
17.
T.
Körzdörfer
,
M.
Mundt
, and
S.
Kümmel
,
Phys. Rev. Lett.
100
,
133004
(
2008
).
18.
P.
Elliott
,
J. I.
Fuks
,
A.
Rubio
, and
N.
Maitra
,
Phys. Rev. Lett.
109
,
266404
(
2012
).
19.
M.
Thiele
and
S.
Kümmel
,
Phys. Rev. Lett.
112
,
083001
(
2014
).
20.
A.
Dreuw
and
M.
Head-Gordon
,
J. Am. Chem. Soc.
126
,
4007
(
2004
).
21.
L.
Kronik
,
T.
Stein
,
S.
Refaely-Abramson
, and
R.
Baer
,
J. Chem. Theory Comput.
8
,
1515
(
2012
).
22.
T.
Körzdörfer
and
J.-L.
Brédas
,
Acc. Chem. Res.
47
,
3284
(
2014
).
23.
T.
Stein
,
L.
Kronik
, and
R.
Baer
,
J. Am. Chem. Soc.
131
,
2818
(
2009
).
24.
T.
Leininger
,
H.
Stoll
,
H.-J.
Werner
, and
A.
Savin
,
Chem. Phys. Lett.
275
,
151
(
1997
).
25.
H.
Iikura
,
T.
Tsuneda
,
T.
Yanai
, and
K.
Hirao
,
J. Chem. Phys.
115
,
3540
(
2001
).
26.
T.
Yanai
,
D. P.
Tew
, and
N. C.
Handy
,
Chem. Phys. Lett.
393
,
51
(
2004
).
27.
Y.
Tawada
,
T.
Tsuneda
,
S.
Yanagisawa
,
T.
Yanai
, and
K.
Hirao
,
J. Chem. Phys.
120
,
8425
(
2004
).
28.
M.
Henderson
,
B. G.
Janesko
, and
G. E.
Scuseria
,
J. Chem. Phys.
128
,
194105
(
2008
).
29.
H.
Sekino
,
Y.
Maeda
,
M.
Kamiya
, and
K.
Hirao
,
J. Chem. Phys.
126
,
014107
(
2007
).
30.
J.-D.
Chai
and
M.
Head-Gordon
,
J. Chem. Phys.
128
,
084106
(
2008
).
31.
A.
Karolewski
,
T.
Stein
,
R.
Baer
, and
S.
Kümmel
,
J. Chem. Phys.
134
,
151101
(
2011
).
32.
R.
Baer
,
E.
Livshits
, and
U.
Salzner
,
Annu. Rev. Phys. Chem.
61
,
85
(
2010
).
33.
T.
Stein
,
L.
Kronik
, and
R.
Baer
,
J. Chem. Phys.
131
,
244119
(
2009
).
34.
X.
Blase
and
C.
Attaccalite
,
Appl. Phys. Lett.
99
,
171909
(
2011
).
35.
D. A.
Egger
,
S.
Weissman
,
S.
Refaely-Abramson
,
S.
Sharifzadeh
,
M.
Dauth
,
R.
Baer
,
S.
Kümmel
,
J. B.
Neaton
,
E.
Zojer
, and
L.
Kronik
,
J. Chem. Theory Comput.
10
,
1934
(
2014
).
36.
J. I.
Fuks
and
N. T.
Maitra
,
Phys. Rev. A
89
,
062502
(
2014
).
37.
J.
Gierschner
,
J.
Cornil
, and
H.-J.
Egelhaaf
,
Adv. Mater.
19
,
173
(
2007
).
38.
T. B.
de Queiroz
and
S.
Kümmel
,
J. Chem. Phys.
141
,
084303
(
2014
).
39.
U.
Salzner
and
A.
Aydin
,
J. Chem. Theory Comput.
7
,
2568
(
2011
).
40.
A.
Karolewski
,
A.
Neubig
,
M.
Thelakkat
, and
S.
Kümmel
,
Phys. Chem. Chem. Phys.
15
,
20016
(
2013
).
41.
S.
Zheng
,
E.
Geva
, and
B. D.
Dunietz
,
J. Chem. Theory Comput.
9
,
1125
(
2013
).
42.
H.
Phillips
,
Z.
Zheng
,
E.
Geva
, and
B. D.
Dunietz
,
Org. Electron.
15
,
1509
(
2014
).
43.
S.
Refaely-Abramson
,
S.
Sharifzadeh
,
M.
Jain
,
R.
Baer
,
J. B.
Neaton
, and
L.
Kronik
,
Phys. Rev. B
88
,
081204
(
2013
).
44.
O. S.
Bokareva
,
G.
Grell
,
S. I.
Bokarev
, and
O.
Kühn
,
J. Chem. Theory Comput.
11
,
1700
(
2015
).
45.
M.
Cossi
,
N.
Rega
,
G.
Scalmani
, and
V.
Barone
,
J. Comput. Chem.
24
,
669
(
2003
).
46.
A. W.
Lange
and
J. M.
Herbert
,
J. Chem. Phys.
133
,
244111
(
2010
).
47.
A. W.
Lange
and
J. M.
Herbert
,
Chem. Phys. Lett.
509
,
77
(
2011
).
48.
O. A.
Vydrov
and
G. E.
Scuseria
,
J. Chem. Phys.
125
,
234109
(
2006
).
49.
H.
Stoll
,
G.
Wagenblast
, and
H.
Preuß
,
Theor. Chim. Acta
57
,
169
(
1980
).
50.
R. Z.
Khaliullin
,
M.
Head-Gordon
, and
A. T.
Bell
,
J. Chem. Phys.
124
,
204105
(
2006
).
51.
See supplementary material at http://dx.doi.org/10.1063/1.4926468 for the details of the solvated structures, the tuning details for solvated T2, the LP SCF tuning features, and comparison of optical gap for different tuning approaches.
52.
K. H.
DuBay
,
M. L.
Hall
,
T. F.
Hughes
,
C.
Wu
,
D. R.
Reichman
, and
R. A.
Friesner
,
J. Chem. Theory Comput.
8
,
4556
(
2012
).
53.
A.
Hamza
,
A.
Vibók
,
G.
Halász
, and
I.
Mayer
,
J. Mol. Struct.: THEOCHEM
501-502
,
427
(
2000
).
54.
R. Z.
Khaliullin
,
E. A.
Cobar
,
R. C.
Lochan
,
A. T.
Bell
, and
M.
Head-Gordon
,
J. Phys. Chem. A
111
,
8753
(
2007
).
55.
P. R.
Horn
,
E. J.
Sundstrom
,
T. A.
Baker
, and
M.
Head-Gordon
,
J. Chem. Phys.
138
,
134119
(
2013
).
56.
57.
P.
Pulay
,
J. Comput. Chem.
3
,
556
(
1982
).
58.
T.
Körzdörfer
,
J. S.
Sears
,
C.
Sutton
, and
J.-L.
Brédas
,
J. Chem. Phys.
135
,
204107
(
2011
).
59.
R.
Colditz
,
D.
Grebner
,
M.
Helbig
, and
S.
Rentsch
,
Chem. Phys.
201
,
309
(
1995
).
60.
R.
Cammi
,
S.
Corni
,
B.
Mennucci
, and
J.
Tomasi
,
J. Chem. Phys.
122
,
104513
(
2005
).
61.
S. J.
Keasler
,
S. M.
Charan
,
C. D.
Wick
,
I. G.
Economou
, and
J. I.
Siepmann
,
J. Phys. Chem. B
116
,
11234
(
2012
).
62.
W. L.
Jorgensen
,
D. S.
Maxwell
, and
J.
Tirado-Rives
,
J. Am. Chem. Soc.
118
,
11225
(
1996
).
63.
V.
Marcon
and
G.
Raos
,
J. Am. Chem. Soc.
128
,
1408
(
2006
).
64.
G. A.
Petersson
,
A.
Bennett
,
T. G.
Tensfeldt
,
M. A.
Al-Laham
,
W. A.
Shirley
, and
J.
Mantzaris
,
J. Chem. Phys.
89
,
2193
(
1988
).
65.
G. A.
Petersson
and
M. A.
Al-Laham
,
J. Chem. Phys.
94
,
6081
(
1991
).
66.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
).
67.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
68.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
69.
J. W.
Ponder
and
F. M.
Richards
,
J. Comput. Chem.
8
,
1016
(
1987
).
70.
Y.
Shao
,
L. F.
Molnar
,
Y.
Jung
,
J.
Kussmann
,
C.
Ochsenfeld
,
S. T.
Brown
,
A. T.
Gilbert
,
L. V.
Slipchenko
,
S. V.
Levchenko
,
D. P.
O’Neill
,
R. A.
DiStasio
, Jr.
,
R. C.
Lochan
,
T.
Wang
,
G. J.
Beran
,
N. A.
Besley
,
J. M.
Herbert
,
C. Y.
Lin
,
T.
Van Voorhis
,
S. H.
Chien
,
A.
Sodt
,
R. P.
Steele
,
V. A.
Rassolov
,
P. E.
Maslen
,
P. P.
Korambath
,
R. D.
Adamson
,
B.
Austin
,
J.
Baker
,
E. F. C.
Byrd
,
H.
Dachsel
,
R. J.
Doerksen
,
A.
Dreuw
,
B. D.
Dunietz
,
A. D.
Dutoi
,
T. R.
Furlani
,
S. R.
Gwaltney
,
A.
Heyden
,
S.
Hirata
,
C.-P.
Hsu
,
G.
Kedziora
,
R. Z.
Khalliulin
,
P.
Klunzinger
,
A. M.
Lee
,
M. S.
Lee
,
W.
Liang
,
I.
Lotan
,
N.
Nair
,
B.
Peters
,
E. I.
Proynov
,
P. A.
Pieniazek
,
Y. M.
Rhee
,
J.
Ritchie
,
E.
Rosta
,
C. D.
Sherrill
,
A. C.
Simmonett
,
J. E.
Subotnik
,
H. L.
Woodcock
III
,
W.
Zhang
,
A. T.
Bell
,
A. K.
Chakraborty
,
D. M.
Chipman
,
F. J.
Keil
,
A.
Warshel
,
W. J.
Hehre
,
H. F.
Schaefer
III
,
J.
Kong
,
A. I.
Krylov
,
P. M. W.
Gill
, and
M.
Head-Gordon
,
Phys. Chem. Chem. Phys.
8
,
3172
(
2006
).

Supplementary Material

You do not currently have access to this content.