Electron-phonon coupling in hexagonal and cubic water ice is studied using first-principles quantum mechanical methods. We consider 29 distinct hexagonal and cubic ice proton-orderings with up to 192 molecules in the simulation cell to account for proton-disorder. We find quantum zero-point vibrational corrections to the minimum electronic band gaps ranging from −1.5 to −1.7 eV, which leads to improved agreement between calculated and experimental band gaps. Anharmonic nuclear vibrations play a negligible role in determining the gaps. Deuterated ice has a smaller band-gap correction at zero-temperature of −1.2 to −1.4 eV. Vibrations reduce the differences between the electronic band gaps of different proton-orderings from around 0.17 eV to less than 0.05 eV, so that the electronic band gaps of hexagonal and cubic ice are almost independent of the proton-ordering when quantum nuclear vibrations are taken into account. The comparatively small reduction in the band gap over the temperature range 0 − 240 K of around 0.1 eV does not depend on the proton ordering, or whether the ice is protiated or deuterated, or hexagonal, or cubic. We explain this in terms of the atomistic origin of the strong electron-phonon coupling in ice.

1.
H.
Weingärtner
and
E.
Franck
,
Angew. Chem., Int. Ed.
44
,
2672
(
2005
).
2.
A.
Liebscher
,
Geofluids
10
,
3
(
2010
).
3.
T.
Bartels-Rausch
,
V.
Bergeron
,
J. H. E.
Cartwright
,
R.
Escribano
,
J. L.
Finney
,
H.
Grothe
,
P. J.
Gutiérrez
,
J.
Haapala
,
W. F.
Kuhs
,
J. B. C.
Pettersson
,
S. D.
Price
,
C. I.
Sainz-Díaz
,
D. J.
Stokes
,
G.
Strazzulla
,
E. S.
Thomson
,
H.
Trinks
, and
N.
Uras-Aytemiz
,
Rev. Mod. Phys.
84
,
885
(
2012
).
4.
M. B.
Baker
and
T.
Peter
,
Nature
451
,
299
(
2008
).
5.
K. C.
Young
,
Microphysical Processes in Clouds
(
Oxford University Press
,
New York
,
1993
).
6.
C.
George
 et al, in
Atmospheric and Aerosol Chemistry
, edited by
V. F.
McNeill
and
P. A.
Ariya
(
Springer
,
2014
).
7.
E. A.
Betterton
and
D. J.
Anderson
,
J. Atmos. Chem.
40
,
171
(
2001
).
8.
A. M.
Grannas
 et al,
Atmos. Chem. Phys.
7
,
4329
(
2007
).
9.
D.
Heger
,
J.
Jirkovsky
, and
P.
Klan
,
J. Phys. Chem. A
109
,
6702
(
2005
).
10.
N.
Takenaka
and
H.
Bandow
,
J. Phys. Chem. A
111
,
8780
(
2007
).
11.
N.
Takenaka
,
A.
Ueda
, and
Y.
Maeda
,
Nature
358
,
736
(
1992
).
12.
S.-C.
Park
,
E.-S.
Moon
, and
H.
Kang
,
Phys. Chem. Chem. Phys.
12
,
12000
(
2010
).
13.
C. S.
Boxe
,
A. J.
Colussi
,
M. R.
Hoffmann
,
I. M.
Perez
,
J. G.
Murphy
, and
R. C.
Cohen
,
J. Phys. Chem. A
110
,
3578
(
2006
).
14.
T. F.
Kahan
and
D. J.
Donaldson
,
J. Phys. Chem. A
111
,
1277
(
2007
).
15.
J.
Klanova
,
P.
Klan
,
J.
Nosek
, and
I.
Holoubek
,
Environ. Sci. Technol.
37
,
1568
(
2003
).
16.
M. P.
Bishop
 et al, in
Encyclopedia of Snow, Ice and Glaciers
, edited by
V. P.
Singh
,
P.
Singh
, and
U. K.
Haritashya
(
Springer
,
2011
).
17.
D.
Chandler
, in
Classical and Quantum Dynamics in Condensed Phase Simulations
, edited by
B. J.
Berne
,
G.
Ciccotti
, and
D. F.
Coke
(
World Scientific
,
1998
).
18.
R. A.
Marcus
,
J. Chem. Phys.
24
,
966
(
1956
).
19.
C. S.
Cucinotta
,
I.
Rungger
, and
S.
Sanvito
,
J. Phys. Chem. C
116
,
22129
(
2012
).
20.
J.
Hama
,
Y.
Shiomi
, and
K.
Suito
,
J. Phys.: Condens. Matter
2
,
8107
(
1990
).
21.
C.
Cavazzoni
 et al,
Science
283
,
44
46
(
1999
).
22.
T. R.
Mattsson
and
M. P.
Desjarlais
,
Phys. Rev. Lett.
97
,
017801
(
2006
).
23.
A.
Hermann
,
N.
Ashcroft
, and
R.
Hoffmann
,
Proc. Natl. Acad. Sci. U. S. A.
109
,
745
750
(
2012
).
24.
C. J.
Pickard
,
M.
Martinez-Canales
, and
R. J.
Needs
,
Phys. Rev. Lett.
110
,
245701
(
2013
).
25.
D.
Pan
,
Q.
Wan
, and
G.
Galli
,
Nat. Commun.
5
,
3919
(
2014
).
26.
N. F.
Ness
 et al,
Science
233
,
85
(
1986
).
27.
E. A.
Engel
,
B.
Monserrat
, and
R. J.
Needs
,
Phys. Rev. X
5
,
021033
(
2015
).
28.
P. H.
Hahn
,
W. G.
Schmidt
,
K.
Seino
,
M.
Preuss
,
F.
Bechstedt
, and
J.
Bernholc
,
Phys. Rev. Lett.
94
,
037404
(
2005
).
29.
C.
Fang
,
W.-F.
Li
,
R. S.
Koster
,
J.
Klimeš
,
A.
van Blaaderen
, and
M. A.
van Huis
,
Phys. Chem. Chem. Phys.
17
,
365
(
2015
).
30.
S. G.
Warren
,
Appl. Opt.
23
,
1206
(
1984
).
31.
A. P.
Minton
,
J. Phys. Chem.
75
,
1162
(
1971
).
32.
L. R.
Painter
,
R. D.
Birkhoff
, and
E. T.
Arakawa
,
J. Chem. Phys.
51
,
243
(
1969
).
33.
M.
Seki
,
K.
Kobayashi
, and
J.
Nakahara
,
J. Phys. Soc. Jpn.
50
,
2643
(
1981
).
34.
T.
Shibaguchi
,
H.
Onuki
, and
R.
Onaka
,
J. Phys. Soc. Jpn.
42
,
152
(
1977
).
35.
J.
Paier
,
M.
Marsman
,
K.
Hummer
,
G.
Kresse
,
I. C.
Gerber
, and
J. G.
Ángyán
,
J. Chem. Phys.
124
,
154709
(
2006
).
36.
S. J.
Clark
and
J.
Robertson
,
Phys. Rev. B
82
,
085208
(
2010
).
37.
L.
Hedin
,
Phys. Rev.
139
,
A796
(
1965
).
38.
L.
Hedin
and
S.
Lundqvist
, in
Solid State Physics
, edited by
F.
Seitz
,
D.
Turnbull
, and
H.
Ehrenreich
(
Academic Press
,
1969
).
39.
M. S.
Hybertsen
and
S. G.
Louie
,
Phys. Rev. Lett.
55
,
1418
(
1985
).
40.
R. W.
Godby
,
M.
Schlüter
, and
L. J.
Sham
,
Phys. Rev. B
37
,
10159
(
1988
).
41.
W. G.
Aulbur
,
L.
Jonsson
, and
J. W.
Wilkins
,
Solid State Phys.
54
,
1
(
2000
).
42.
C. J.
Cramer
,
Essentials of Computational Chemistry
(
Wiley & Sons, Inc.
,
2002
), pp.
191
232
.
43.
I.
Shavitt
and
R. J.
Bartlett
,
Many-Body Methods in Chemistry and Physics: MBPT and Coupled-Cluster Theory
(
Cambridge University Press
,
2009
).
44.
D. M.
Ceperley
and
B. J.
Alder
,
Phys. Rev. Lett.
45
,
566
(
1980
).
45.
W. M. C.
Foulkes
,
L.
Mitas
,
R. J.
Needs
, and
G.
Rajagopal
,
Rev. Mod. Phys.
73
,
33
(
2001
).
46.
R. J.
Needs
,
M. D.
Towler
,
N. D.
Drummond
, and
P.
López Ríos
,
J. Phys.: Condens. Matter
22
,
023201
(
2010
).
47.
N. D.
Drummond
,
A. J.
Williamson
,
R. J.
Needs
, and
G.
Galli
,
Phys. Rev. Lett.
95
,
096801
(
2005
).
48.
A. J.
Williamson
,
R. Q.
Hood
,
R. J.
Needs
, and
G.
Rajagopal
,
Phys. Rev. B
57
,
12140
(
1998
).
49.
B.
Monserrat
,
E. A.
Engel
, and
R. J.
Needs
,
Phys. Rev. B
92
,
140302(R)
(
2015
).
50.
C.
Sanchez-Valle
,
D.
Mantegazzi
,
J.
Bass
, and
E.
Reusser
,
J. Chem. Phys.
138
,
054505
(
2013
).
51.
B.
Monserrat
,
G. J.
Conduit
, and
R. J.
Needs
,
Phys. Rev. B
90
,
184302
(
2014
).
52.
J. D.
Bernal
and
R. H.
Fowler
,
J. Chem. Phys.
1
,
515
(
1933
).
53.
H.
König
,
Z. Kristallogr.
105
,
279
(
1944
).
54.
B. J.
Murray
,
D. A.
Knopf
, and
A. K.
Bertram
,
Nature
434
,
202
(
2005
).
55.
J. E.
Shilling
,
M. A.
Tolbert
,
O. B.
Toon
,
E. J.
Jensen
,
B. J.
Murray
, and
A. K.
Bertram
,
Geophys. Res. Lett.
33
,
L17801
, doi:10.1029/2006GL026671 (
2006
).
56.
T. L.
Malkin
,
B. J.
Murray
,
C. G.
Salzmann
,
V.
Molinero
,
S. J.
Pickering
, and
T. F.
Whale
,
Phys. Chem. Chem. Phys.
17
,
60
(
2015
).
57.
W. F.
Kuhs
,
C.
Sippel
,
A.
Falenty
, and
T. C.
Hansen
,
Proc. Natl. Acad. Sci. U. S. A.
109
,
21259
(
2012
).
58.
T. H. G.
Carr
,
J. J.
Shephard
, and
C. G.
Salzmann
,
J. Phys. Chem. Lett.
5
,
2469
(
2014
).
59.
L.
Pauling
,
J. Am. Chem. Soc.
57
,
2680
(
1935
).
60.
Y.
Tajima
,
T.
Matsuo
, and
H.
Suga
,
Nature
299
,
810
(
1982
).
61.
S. M.
Jackson
and
R. W.
Whitworth
,
J. Phys. Chem. B
101
,
6177
(
1997
).
62.
J. F.
Nagle
,
J. Math. Phys.
7
,
1484
(
1966
).
63.
C. P.
Herrero
and
R.
Ramírez
,
J. Chem. Phys.
140
,
234502
(
2014
).
64.
K.
Hirsch
and
L.
Ojamäe
,
J. Phys. Chem. B
108
,
15856
(
2004
).
65.
Z.
Raza
,
D.
Alfè
,
C. G.
Salzmann
,
J.
Klimeš
,
A.
Michaelides
, and
B.
Slater
,
Phys. Chem. Chem. Phys.
13
,
19788
(
2011
).
66.
J.
Lekner
,
Physica B
252
,
149
(
1998
).
67.
S. J.
Singer
,
J.
Kuo
,
T. K.
Hirsch
,
C.
Knight
,
L.
Ojamäe
, and
M. L.
Klein
,
Phys. Rev. Lett.
94
,
135701
(
2005
).
68.
See supplementary material at http://dx.doi.org/10.1063/1.4938029 for more information on the convergence of the band gap corrections with the simulation cell size, the failure of the quadratic approximation for the electronic band gap in ice, vibrational averaging over proton-orderings, the atomistic picture, the choice of the exchange-correlation functional and the effects of unit cell expansion, correlated sampling for the temperature dependence of the band gap, and the effects of large vibrational displacements on band gap measurements.
69.
S. J.
Clark
,
M. D.
Segall
,
C. J.
Pickard
,
P. J.
Hasnip
,
M. I. J.
Probert
,
K.
Refson
, and
M. C.
Payne
,
Z. Kristallogr.
220
,
567
(
2005
).
70.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
71.
B.
Santra
,
J.
Klimeš
,
A.
Tkatchenko
,
D.
Alfè
,
B.
Slater
,
A.
Michaelides
,
R.
Car
, and
M.
Scheffler
,
J. Chem. Phys.
139
,
154702
(
2013
).
72.
D.
Vanderbilt
,
Phys. Rev. B
41
,
7892
(
1990
).
73.
K.
Kunc
and
R. M.
Martin
,
Phys. Rev. Lett.
48
,
406
(
1982
).
74.
B.
Monserrat
,
N. D.
Drummond
, and
R. J.
Needs
,
Phys. Rev. B
87
,
144302
(
2013
).
75.
C. E.
Patrick
and
F.
Giustino
,
J. Phys.: Condens. Matter
26
,
365503
(
2014
).
76.
X.
Gonze
,
P.
Boulanger
, and
M.
Côté
,
Ann. Phys.
523
,
168
(
2011
).
77.
B.
Monserrat
,
R. J.
Needs
, and
C. J.
Pickard
,
J. Chem. Phys.
141
,
134113
(
2014
).
78.
M.
Zacharias
,
C. E.
Patrick
, and
F.
Giustino
,
Phys. Rev. Lett.
115
,
177401
(
2015
).
79.
H.
Bethe
and
E.
Salpeter
,
Phys. Rev.
84
,
1232
(
1951
).
80.
A.
Marini
,
Phys. Rev. Lett.
101
,
106405
(
2008
).
81.
J.
Noffsinger
,
E.
Kioupakis
,
C. G.
Van de Walle
,
S. G.
Louie
, and
M. L.
Cohen
,
Phys. Rev. Lett.
108
,
167402
(
2012
).
82.
M.
Schönherr
,
B.
Slater
,
J.
Hutter
, and
J.
VandeVondele
,
J. Phys. Chem. B
118
,
590
(
2014
).

Supplementary Material

You do not currently have access to this content.