A thorough investigation has been performed for electronic structure, topological effect, and nuclear dynamics of NO2 molecule, where the adiabatic potential energy surfaces (PESs), conical intersections between the ground (X2A1) and the first excited state (A2B2), and the corresponding non-adiabatic coupling terms between those states are recalculated [Chem. Phys. 416, 11 (2013)] to achieve enough accuracy in dynamics. We employ beyond Born-Oppenheimer theory for these two state sub-Hilbert space to carry out adiabatic to diabatic transformation (ADT) to obtain the ADT angles and thereby, to construct single-valued, smooth, and continuous diabatic PESs. The analytic expressions for the adiabatic PESs and ADT angles are provided to represent a two-state three-mode diabatic Hamiltonian of NO2 for performing nuclear dynamics to calculate the photo-electron spectra of its anion. It appears that not only Jahn-Teller type coupling but also Renner-Teller interaction contributes significantly on the overall spectrum. The coupling between the electronic states (X2A1 and A2B2) of NO2 is essentially through the asymmetric stretching mode, where the functional form of such interaction is distinctly symmetric and non-linear.

1.
S.
Sardar
,
S.
Mukherjee
,
A. K.
Paul
, and
S.
Adhikari
,
Chem. Phys.
416
,
11
(
2013
).
2.
G. D.
Gillispie
,
A. U.
Khan
,
A. C.
Wahl
,
R. P.
Hosteny
, and
M.
Krauss
,
J. Chem. Phys.
63
,
3425
(
1975
).
3.
C. F.
Jackels
and
E. R.
Davidson
,
J. Chem. Phys.
64
,
2908
(
1976
).
4.
H. A.
Jahn
and
E.
Teller
,
Proc. R. Soc. London
161
,
1133
(
1937
).
6.
C. G.
Stevens
and
R. N.
Zare
,
J. Mol. Spectrosc.
56
,
167
(
1975
).
7.
T.
Tanaka
,
R. W.
Field
, and
D. O.
Harris
,
J. Mol. Spectrosc.
56
,
188
(
1975
).
8.
W. C.
Bowman
and
F. C. D.
Lucia
,
J. Chem. Phys.
77
,
92
(
1982
).
9.
K. M.
Ervin
,
J.
Ho
, and
W. C.
Lineberger
,
J. Phys. Chem.
92
,
5405
(
1988
).
10.
A.
Weaver
,
R. B.
Metz
,
S. E.
Bradforth
, and
D. M.
Neumark
,
J. Chem. Phys.
90
,
2070
(
1989
).
11.
A.
Delon
and
R.
Jost
,
J. Chem. Phys.
95
,
5686
(
1991
).
12.
A.
Delon
,
R.
Jost
, and
M.
Jacon
,
J. Chem. Phys.
114
,
331
(
2000
).
13.
G. D.
Gillispie
and
A. U.
Khan
,
J. Chem. Phys.
65
,
1624
(
1976
).
14.
C. F.
Jackels
and
E. R.
Davidson
,
J. Chem. Phys.
63
,
4672
(
1975
).
15.
C. F.
Jackels
and
E. R.
Davidson
,
J. Chem. Phys.
65
,
2941
(
1976
).
16.
C. P.
Blahous
,
B. F.
Yates
,
Y.
Xie
, and
H. F.
Schaefer
III
,
J. Chem. Phys.
93
,
8105
(
1990
).
17.
U.
Kaldor
,
Chem. Phys. Lett.
185
,
131
(
1991
).
18.
G.
Hirsch
,
R. J.
Buenker
, and
C.
Petrongolo
,
Mol. Phys.
70
,
835
(
1990
).
19.
E.
Leonardi
,
C.
Petrongolo
,
V.
Keshari
,
G.
Hirsch
, and
R. J.
Buenker
,
Mol. Phys.
82
,
553
(
1994
).
20.
E.
Leonardi
,
C.
Petrongolo
,
G.
Hirsch
, and
R. J.
Buenker
,
J. Chem. Phys.
105
,
9051
(
1996
).
21.
E.
Leonardi
and
C.
Petrongolo
,
J. Chem. Phys.
106
,
10066
(
1997
).
22.
E.
Haller
,
H.
Köppel
, and
L. S.
Cederbaum
,
J. Mol. Spectrosc.
111
,
377
(
1985
).
23.
S.
Mahapatra
,
H.
Köppel
, and
L. S.
Cederbaum
,
J. Chem. Phys.
110
,
5691
(
1999
).
24.
S.
Mahapatra
,
H.
Köppel
,
L. S.
Cederbaum
,
P.
Stampfu
, and
W.
Wenzel
,
Chem. Phys.
259
,
211
(
2000
).
25.
S. Yu.
Grebenshchikov
,
C.
Beck
,
H.
Flöthman
,
R.
Schinke
, and
S.
Kato
,
J. Chem. Phys.
111
,
619
(
1999
).
26.
V.
Kurkal
,
P.
Fleurat-Lessard
, and
R.
Schinke
,
J. Chem. Phys.
119
,
1489
(
2003
).
27.
R.
Schinke
,
S. Yu.
Grebenshchikov
, and
H.
Zhu
,
Chem. Phys.
346
,
99
(
2008
).
28.
U.
Manthe
,
H.-D.
Meyer
, and
L. S.
Cederbaum
,
J. Chem. Phys.
97
,
9062
(
1992
).
29.
F.
Santoro
and
C.
Petrongolo
,
J. Chem. Phys.
110
,
4419
(
1999
).
30.
D.
Reignier
,
T.
Stoecklin
,
P.
Halvick
,
A.
Voronin
, and
J. C.
Rayez
,
Phys. Chem. Chem. Phys.
3
,
2726
(
2001
).
31.
R.
Sayós
,
C.
Oliva
, and
M.
González
,
J. Chem. Phys.
115
,
1287
(
2001
).
32.
A. J. C.
Varandas
,
J. Chem. Phys.
119
,
2596
(
2003
).
33.
M.
Joyeux
,
R.
Jost
, and
M.
Lombardi
,
J. Chem. Phys.
119
,
5923
(
2003
).
34.
M.
Sanrey
and
M.
Joyeux
,
J. Chem. Phys.
125
,
014304
(
2006
).
35.
Y.
Arasaki
and
K.
Takatsuka
,
Chem. Phys.
338
,
175
(
2007
).
36.
Y.
Arasaki
,
K.
Takatsuka
,
K.
Wang
, and
V.
McKoy
,
J. Chem. Phys.
132
,
124307
(
2010
).
37.
Y.
Arasaki
,
K.
Wang
,
V.
McKoy
, and
K.
Takatsuka
,
Phys. Chem. Chem. Phys.
13
,
8681
(
2011
).
38.
H.
Köppel
,
W.
Domcke
, and
L. S.
Cederbaum
,
Adv. Chem. Phys.
57
,
59
(
1984
).
39.
Conical Intersections: Electronic Structure, Dynamics and Spectroscopy
,
Advanced Series in Physical Chemistry
Vol.
15
, edited by
W.
Domcke
,
D. R.
Yarkony
, and
H.
Köppel
(
World Scientific
,
Singapore
,
2004
).
40.
I. B.
Bersuker
,
The Jahn-Teller Effect
(
Cambridge University Press
,
Cambridge, UK
,
2006
).
41.
H.
Nakamura
,
Nonadiabatic Transition: Concepts, Basic Theories and Applications
(
World Scientific
,
Singapore
,
2002
).
42.
M.
Born
and
J. R.
Oppenheimer
,
Ann. Phys. (Leipzig)
84
,
457
(
1927
).
43.
M.
Born
and
K.
Huang
,
Dynamical Theory of Crystal Lattices
(
Oxford University Press
,
Oxford
,
1954
).
44.
R.
Baer
,
D.
Charutz
,
R.
Kosloff
, and
M.
Baer
,
J. Chem. Phys.
105
,
9141
(
1996
).
45.
D.
Charutz
,
R.
Baer
, and
M.
Baer
,
Chem. Phys. Lett.
265
,
629
(
1997
).
46.
A. J. C.
Varandas
and
Z. R.
Xu
,
J. Chem. Phys.
112
,
2121
(
2000
).
47.
S.
Adhikari
and
G. D.
Billing
,
J. Chem. Phys.
111
,
40
(
1999
).
48.
M.
Baer
,
S. H.
Lin
,
A.
Alijah
,
S.
Adhikari
, and
G. D.
Billing
,
Phys. Rev. A
62
,
32506
(
2000
).
49.
S.
Adhikari
,
G. D.
Billing
,
A.
Alijah
,
S. H.
Lin
, and
M.
Baer
,
Phys. Rev. A
62
,
32507
(
2000
).
50.
F.
Aguilon
,
M.
Sizun
,
V.
Sidis
,
G. D.
Billing
, and
N.
Markovic
,
J. Chem. Phys.
104
,
4530
(
1996
).
51.
I.
Last
,
M.
Gilibert
, and
M.
Baer
,
J. Chem. Phys.
107
,
1451
(
1997
).
52.
H. C.
Longuet-Higgins
,
Proc. R. Soc. London, Ser. A
344
,
147
(
1975
).
53.
A. J. C.
Varandas
,
J.
Tennyson
, and
J. N.
Murrel
,
Chem. Phys. Lett.
61
,
431
(
1979
).
54.
A. K.
Paul
,
S.
Ray
,
D.
Mukhopadhyay
, and
S.
Adhikari
,
Chem. Phys. Lett.
508
,
300
(
2011
).
55.
S.
Mukherjee
,
S.
Bandyopadhyay
,
A. K.
Paul
, and
S.
Adhikari
,
J. Phys. Chem. A
117
,
3475
(
2013
).
56.
G.
Herzberg
and
H. C.
Longuet-Higgins
,
Discuss. Faraday Soc.
35
,
77
(
1963
).
57.
58.
Z. H.
Top
and
M.
Baer
,
J. Chem. Phys.
66
,
1363
(
1977
).
60.
M.
Baer
,
Beyond Born Oppenheimer: Conical Intersections and Electronic Non-Adiabatic Coupling Terms
(
Wiley-Interscience
,
New York
,
2006
).
61.
M.
Baer
and
R.
Englman
,
Mol. Phys.
75
(
2
),
293
(
1992
).
62.
B.
Sarkar
and
S.
Adhikari
,
J. Chem. Phys.
124
,
074101
(
2006
).
63.
B.
Sarkar
and
S.
Adhikari
,
J. Phys. Chem. A
112
,
9868
(
2008
).
64.
A. K.
Paul
,
S.
Sardar
,
B.
Sarkar
, and
S.
Adhikari
,
J. Chem. Phys.
131
,
124312
(
2009
).
65.
A. K.
Paul
,
S.
Ray
,
D.
Mukhopadhyay
, and
S.
Adhikari
,
J. Chem. Phys.
135
,
034107
(
2011
).
66.
S.
Mukherjee
and
S.
Adhikari
,
Chem. Phys.
440
,
106
(
2014
).
67.
S.
Mukherjee
,
D.
Mukhopadhyay
, and
S.
Adhikari
,
J. Chem. Phys.
141
,
204306
(
2014
).
68.
H. C. L.
Higgins
,
Mol. Phys.
6
(
5
),
445
(
1963
).
69.
S.
Al-Jabour
,
M.
Baer
,
O.
Deeb
,
M.
Leibscher
,
J.
Manz
,
X.
Xu
, and
S.
Zilberg
,
J. Phys. Chem. A
114
,
2991
(
2010
).
70.
S.
Al-Jabour
and
M.
Leibscher
,
J. Phys. Chem. A
119
,
271
(
2015
).
71.
H.-J.
Werner
,
P. J.
Knowles
 et al., molpro, version 2010.1, a package of ab initio programs, 2010, see http://www.molpro.net.
72.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
73.
D. R.
Yarkony
,
Acc. Chem. Res.
31
,
511
(
1998
).
74.
G. J.
Halasz
,
A.
Vibók
,
R.
Baer
, and
M.
Baer
,
J. Chem. Phys.
125
,
094102
(
2006
).
75.
See supplementary material at http://dx.doi.org/10.1063/1.4938526 for (i) the coefficients and parameters of the analytic functions in different pairwise dimensionless coordinates for the adiabatic PESs and ADT angles; (ii) the dressed potential energy curves forQ1Q2 and Q1Q3 pairwise modes.
76.
H. B.
van Linden van den Heuvell
,
H. G.
Muller
, and
A.
ten Wolde
,
Electronic and Atomic Collisions
(
Elsevier
,
Amsterdam
,
1988
).

Supplementary Material

You do not currently have access to this content.