To interpret molecular dynamics simulations of complex systems, systematic dimensionality reduction methods such as principal component analysis (PCA) represent a well-established and popular approach. Apart from Cartesian coordinates, internal coordinates, e.g., backbone dihedral angles or various kinds of distances, may be used as input data in a PCA. Adopting two well-known model problems, folding of villin headpiece and the functional dynamics of BPTI, a systematic study of PCA using distance-based measures is presented which employs distances between Cα-atoms as well as distances between inter-residue contacts including side chains. While this approach seems prohibitive for larger systems due to the quadratic scaling of the number of distances with the size of the molecule, it is shown that it is sufficient (and sometimes even better) to include only relatively few selected distances in the analysis. The quality of the PCA is assessed by considering the resolution of the resulting free energy landscape (to identify metastable conformational states and barriers) and the decay behavior of the corresponding autocorrelation functions (to test the time scale separation of the PCA). By comparing results obtained with distance-based, dihedral angle, and Cartesian coordinates, the study shows that the choice of input variables may drastically influence the outcome of a PCA.

1.
M. A.
Rohrdanz
,
W.
Zheng
, and
C.
Clementi
,
Annu. Rev. Phys. Chem.
64
,
295
(
2013
).
2.
P.
Das
,
M.
Moll
,
H.
Stamati
,
L. E.
Kavraki
, and
C.
Clementi
,
Proc. Natl. Acad. Sci. U. S. A.
103
,
9885
(
2006
).
3.
O. F.
Lange
and
H.
Grubmüller
,
Proteins
62
,
1053
(
2006
).
4.
R.
Hegger
,
A.
Altis
,
P. H.
Nguyen
, and
G.
Stock
,
Phys. Rev. Lett.
98
,
028102
(
2007
).
5.
S. V.
Krivov
and
M.
Karplus
,
Proc. Natl. Acad. Sci. U. S. A.
105
,
13841
(
2008
).
6.
S. V.
Krivov
,
J. Chem. Theory Comput.
9
,
135
(
2013
).
7.
J. S.
Hub
and
B. L.
de Groot
,
PLoS Comput. Biol.
5
,
e1000480
(
2009
).
8.
G.
Perez-Hernandez
,
F.
Paul
,
T.
Giorgino
,
G.
De Fabritiis
, and
F.
Noe
,
J. Chem. Phys.
139
,
015102
(
2013
).
9.
I. T.
Jolliffe
,
Principal Component Analysis
(
Springer
,
New York
,
2002
).
10.
T.
Ichiye
and
M.
Karplus
,
Proteins
11
,
205
(
1991
).
11.
12.
A.
Amadei
,
A. B. M.
Linssen
, and
H. J. C.
Berendsen
,
Proteins
17
,
412
(
1993
).
13.
A.
Kitao
and
N.
,
Curr. Opin. Struct. Biol.
9
,
164
(
1999
).
14.
B. L.
de Groot
,
X.
Daura
,
A. E.
Mark
, and
H.
Grubmüller
,
J. Mol. Biol.
309
,
299
(
2001
).
15.
A.
Altis
,
M.
Otten
,
P. H.
Nguyen
,
R.
Hegger
, and
G.
Stock
,
J. Chem. Phys.
128
,
245102
(
2008
).
16.
G. G.
Maisuradze
,
A.
Liwo
, and
H. A.
Scheraga
,
Phys. Rev. Lett.
102
,
238102
(
2009
).
18.
O. F.
Lange
and
H.
Grubmüller
,
J. Chem. Phys.
124
,
214903
(
2006
).
19.
C.
Micheletti
,
G.
Bussi
, and
A.
Laio
,
J. Chem. Phys.
129
,
074105
(
2008
).
20.
R.
Hegger
and
G.
Stock
,
J. Chem. Phys.
130
,
034106
(
2009
).
21.
N.
Schaudinnus
,
B.
Bastian
,
R.
Hegger
, and
G.
Stock
,
Phys. Rev. Lett.
115
,
050602
(
2015
).
22.
F.
Rao
and
A.
Caflisch
,
J. Mol. Biol.
342
,
299
(
2004
).
23.
N.-V.
Buchete
and
G.
Hummer
,
J. Phys. Chem. B
112
,
6057
(
2008
).
24.
F.
Noe
,
C.
Schütte
,
E.
Vanden-Eijnden
,
L.
Reich
, and
T.
Weikl
,
Proc. Natl. Acad. Sci. U. S. A.
106
,
19011
(
2009
).
25.
G. R.
Bowman
,
K. A.
Beauchamp
,
G.
Boxer
, and
V. S.
Pande
,
J. Chem. Phys.
131
,
124101
(
2009
).
26.
J.-H.
Prinz
 et al,
J. Chem. Phys.
134
,
174105
(
2011
).
27.
D.
Shukla
,
C. X.
Hernndez
,
J. K.
Weber
, and
V. S.
Pande
,
Acc. Chem. Res.
48
,
414
(
2015
).
28.
29.
J. N.
Onuchic
,
Z. L.
Schulten
, and
P. G.
Wolynes
,
Annu. Rev. Phys. Chem.
48
,
545
(
1997
).
30.
K. A.
Dill
and
H. S.
Chan
,
Nat. Struct. Biol.
4
,
10
(
1997
).
31.
M.
Gruebele
,
Curr. Opin. Struct. Biol.
12
,
161
(
2002
).
32.
D. J.
Wales
,
Energy Landscapes
(
Cambridge University Press
,
Cambridge
,
2003
).
33.
F.
Sittel
,
A.
Jain
, and
G.
Stock
,
J. Chem. Phys.
141
,
014111
(
2014
).
34.
D. M. D.
van Aalten
,
B. L.
de Groot
,
J. B. C.
Finday
,
H. J. C.
Berendsen
, and
A.
Amadei
,
J. Comput. Chem.
18
,
169
(
1997
).
35.
N.
Elmaci
and
R. S.
Berry
,
J. Chem. Phys.
110
,
10606
(
1999
).
36.
A.
Altis
,
P. H.
Nguyen
,
R.
Hegger
, and
G.
Stock
,
J. Chem. Phys.
126
,
244111
(
2007
).
37.
L.
Riccardi
,
P. H.
Nguyen
, and
G.
Stock
,
J. Phys. Chem. B
113
,
16660
(
2009
).
38.
A.
Jain
,
R.
Hegger
, and
G.
Stock
,
J. Phys. Chem. Lett.
1
,
2769
(
2010
).
39.
S.
Omori
,
S.
Fuchigami
,
M.
Ikeguchi
, and
A.
Kidera
,
J. Chem. Phys.
132
,
115103
(
2010
).
40.
R.
Abseher
and
M.
Nilges
,
J. Mol. Biol.
279
,
911
(
1998
).
41.
A.
Kloczkowski
 et al,
J. Struct. Funct. Genomics
10
,
67
(
2009
).
42.
N.
Hori
,
G.
Chikenji
,
R. S.
Berry
, and
S.
Takada
,
Proc. Natl. Acad. Sci. U. S. A.
106
,
73
(
2009
).
43.
L. R.
Allen
,
S. V.
Krivov
, and
E.
Paci
,
PLoS Comput. Biol.
5
,
e1000428
(
2009
).
44.
I. V.
Kalgin
,
A.
Caflisch
,
S. F.
Chekmarev
, and
M.
Karplus
,
J. Phys. Chem. B
117
,
6092
(
2013
).
45.
M. K.
Scherer
 et al,
J. Chem. Theory Comput.
11
,
5525
(
2015
).
46.
R. B.
Best
,
G.
Hummer
, and
W. A.
Eaton
,
Proc. Natl. Acad. Sci. U. S. A.
110
,
17874
(
2013
).
47.
R. B.
Best
and
G.
Hummer
,
Proc. Natl. Acad. Sci. U. S. A.
107
,
1088
(
2010
).
48.
E.
Shakhnovich
,
G.
Farztdinov
,
A. M.
Gutin
, and
M.
Karplus
,
Phys. Rev. Lett.
67
,
1665
(
1991
).
49.
S.
Piana
,
K.
Lindorff-Larsen
, and
D. E.
Shaw
,
Proc. Natl. Acad. Sci. U. S. A.
109
,
17845
(
2012
).
50.
51.
Y.
Duan
and
P. A.
Kollman
,
Science
282
,
740
(
1998
).
52.
C. D.
Snow
,
H.
Nguyen
,
V. S.
Pande
, and
M.
Gruebele
,
Nature
420
,
102
(
2002
).
53.
D. L.
Ensign
,
P. M.
Kasson
, and
V. S.
Pande
,
J. Mol. Biol.
374
,
806
(
2007
).
54.
J.
Kubelka
,
T. K.
Chiu
,
D. R.
Davies
,
W. A.
Eaton
, and
J.
Hofrichter
,
J. Mol. Biol.
359
,
546
(
2006
).
55.
A.
Rajan
,
P. L.
Freddolino
, and
K.
Schulten
,
PLoS One
5
,
e9890
(
2010
).
56.
V.
Hornak
 et al,
Proteins
65
,
712
(
2006
).
57.
R. B.
Best
and
G.
Hummer
,
J. Phys. Chem. B
113
,
9004
(
2009
).
58.
K.
Lindorff-Larsen
 et al,
Proteins
78
,
1950
(
2010
).
59.
W. L.
Jorgensen
,
J.
Chandrasekhar
,
J. D.
Madura
,
R. W.
Impey
, and
M.
Klein
,
J. Chem. Phys.
79
,
926
(
1983
).
60.
W.
Kabsch
and
C.
Sander
,
Biopolymers
22
,
2577
(
1983
).
61.
A.
Wlodawer
,
J.
Walter
,
R.
Huber
, and
L.
Sjölin
,
J. Mol. Biol.
180
,
301
(
1984
).
62.
H. W.
Horn
 et al,
J. Chem. Phys.
120
,
9665
(
2004
).
63.
Y.
Mu
,
P. H.
Nguyen
, and
G.
Stock
,
Proteins
58
,
45
(
2005
).
64.
A.
Jain
and
G.
Stock
,
J. Phys. Chem. B
118
,
7750
7760
(
2014
).
65.
J.
Heringa
and
P.
Argos
,
J. Mol. Biol.
220
,
151
(
1991
).
66.
N.
Michaud-Agrawal
,
E. J.
Denning
,
T. B.
Woolf
, and
O.
Beckstein
,
J. Comput. Chem.
32
,
2319
(
2011
).
67.
T.
Zhou
and
A.
Caflisch
,
J. Chem. Theory Comput.
8
,
2930
2937
(
2012
).
68.
A.
Jain
and
G.
Stock
,
J. Chem. Theory Comput.
8
,
3810
(
2012
).
69.
F.
Sittel
and
G.
Stock
, “
Robust density-based clustering to identify metastable conformational states of proteins
” (to be published).
70.
See supplementary material at http://dx.doi.org/10.1063/1.4938249 for details on the one-dimensional free energy landscapes and the CαPCA using all residues.

Supplementary Material

You do not currently have access to this content.