Parkinson’s disease, originating from the intrinsically disordered peptide α-synuclein, is a common neurodegenerative disorder that affects more than 5% of the population above age 85. It remains unclear how α-synuclein monomers undergo conformational changes leading to aggregation and formation of fibrils characteristic for the disease. In the present study, we perform molecular dynamics simulations (over 180 μs in aggregated time) using a hybrid-resolution model, Proteins with Atomic details in Coarse-grained Environment (PACE), to characterize in atomic detail structural ensembles of wild type and mutant monomeric α-synuclein in aqueous solution. The simulations reproduce structural properties of α-synuclein characterized in experiments, such as secondary structure content, long-range contacts, chemical shifts, and 3J(HNHCα)-coupling constants. Most notably, the simulations reveal that a short fragment encompassing region 38-53, adjacent to the non-amyloid-β component region, exhibits a high probability of forming a β-hairpin; this fragment, when isolated from the remainder of α-synuclein, fluctuates frequently into its β-hairpin conformation. Two disease-prone mutations, namely, A30P and A53T, significantly accelerate the formation of a β-hairpin in the stated fragment. We conclude that the formation of a β-hairpin in region 38-53 is a key event during α-synuclein aggregation. We predict further that the G47V mutation impedes the formation of a turn in the β-hairpin and slows down β-hairpin formation, thereby retarding α-synuclein aggregation.

1.
M.
Goedert
, “
Alzheimer’s and Parkinson’s diseases: The prion concept in relation to assembled Aβ, tau, and α-synuclein
,”
Science
349
,
1255555
(
2015
).
2.
M.
Baba
,
S.
Nakajo
,
P.-H.
Tu
,
T.
Tomita
,
K.
Nakaya
,
V.
Lee
,
J. Q.
Trojanowski
, and
T.
Iwatsubo
, “
Aggregation of α-synuclein in Lewy bodies of sporadic Parkinson’s disease and dementia with Lewy bodies
,”
Am. J. Pathol.
152
,
879
(
1998
).
3.
M. G.
Spillantini
,
M. L.
Schmidt
,
V. M.-Y.
Lee
,
J. Q.
Trojanowski
,
R.
Jakes
, and
M.
Goedert
, “
α-synuclein in Lewy bodies
,”
Nature
388
,
839
840
(
1997
).
4.
K.
Conway
,
S.-J.
Lee
,
J.-C.
Rochet
,
T.
Ding
,
J.
Harper
,
R.
Williamson
, and
P.
Lansbury
, “
Accelerated oligomerization by Parkinson’s disease linked α-synuclein mutants
,”
Ann. N. Y. Acad. Sci.
920
,
42
45
(
2000
).
5.
M. S.
Goldberg
and
P. T.
Lansbury
, Jr.
, “
Is there a cause-and-effect relationship between α-synuclein fibrillization and Parkinson’s disease?
,”
Nat. Cell Biol.
2
,
E115
E119
(
2000
).
6.
M. M.
Apetri
,
N. C.
Maiti
,
M. G.
Zagorski
,
P. R.
Carey
, and
V. E.
Anderson
, “
Secondary structure of α-synuclein oligomers: Characterization by Raman and atomic force microscopy
,”
J. Mol. Biol.
355
,
63
71
(
2006
).
7.
M.
Vilar
,
H.-T.
Chou
,
T.
Lührs
,
S. K.
Maji
,
D.
Riek-Loher
,
R.
Verel
,
G.
Manning
,
H.
Stahlberg
, and
R.
Riek
, “
The fold of α-synuclein fibrils
,”
Proc. Natl. Acad. Sci. U. S. A.
105
,
8637
8642
(
2008
).
8.
V. N.
Uversky
,
C. J.
Oldfield
, and
A. K.
Dunker
, “
Intrinsically disordered proteins in human diseases: Introducing the D2 concept
,”
Annu. Rev. Biophys.
37
,
215
246
(
2008
).
9.
T.
Bartels
,
J. G.
Choi
, and
D. J.
Selkoe
, “
α-synuclein occurs physiologically as a helically folded tetramer that resists aggregation
,”
Nature
477
,
107
110
(
2011
).
10.
A.
Binolfi
,
F.-X.
Theillet
, and
P.
Selenko
, “
Bacterial in-cell NMR of human α-synuclein: A disordered monomer by nature
,”
Biochem. Soc. Trans.
40
,
950
954
(
2012
).
11.
A. R.
Braun
,
E.
Sevcsik
,
P.
Chin
,
E.
Rhoades
,
S.
Tristram-Nagle
, and
J. N.
Sachs
, “
α-synuclein induces both positive mean curvature and negative Gaussian curvature in membranes
,”
J. Am. Chem. Soc.
134
,
2613
2620
(
2012
).
12.
H.-Y.
Kim
,
H.
Heise
,
C. O.
Fernandez
,
M.
Baldus
, and
M.
Zweckstetter
, “
Correlation of amyloid fibril β-structure with the unfolded state of α-synuclein
,”
ChemBioChem
8
,
1671
1674
(
2007
).
13.
A. J.
Trexler
and
E.
Rhoades
, “
Function and dysfunction of α-synuclein: Probing conformational changes and aggregation by single molecule fluorescence
,”
Mol. Neurobiol.
47
,
622
631
(
2013
).
14.
C.
Eugene
,
R.
Laghaei
, and
N.
Mousseau
, “
Early oligomerization stages for the non-amyloid component of α-synuclein amyloid
,”
J. Chem. Phys.
141
,
135103
(
2014
).
15.
W. W.
Smith
,
C. F.
Schreck
,
N.
Hashem
,
S.
Soltani
,
A.
Nath
,
E.
Rhoades
, and
C. S.
Oern
, “
Molecular simulations of the fluctuating conformational dynamics of intrinsically disordered proteins
,”
Phys. Rev. E
86
,
041910
(
2012
).
16.
T. R.
Alderson
and
J. L.
Markley
, “
Biophysical characterization of α-synuclein and its controversial structure
,”
Intrinsically Disord. Proteins
1
,
e26255
(
2013
).
17.
Q.
Qiao
,
G. R.
Bowman
, and
X.
Huang
, “
Dynamics of an intrinsically disordered protein reveal metastable conformations that potentially seed aggregation
,”
J. Am. Chem. Soc.
135
,
16092
16101
(
2013
).
18.
A. L.
Fink
, “
The aggregation and fibrillation of α-synuclein
,”
Acc. Chem. Res.
39
,
628
634
(
2006
).
19.
U.
Dettmer
,
A. J.
Newman
,
F.
Soldner
,
E. S.
Luth
,
N. C.
Kim
,
V. E.
von Saucken
,
J. B.
Sanderson
,
R.
Jaenisch
,
T.
Bartels
, and
D.
Selkoe
, “
Parkinson-causing α-synuclein missense mutations shift native tetramers to monomers as a mechanism for disease initiation
,”
Nat. Commun.
6
,
7314
(
2015
).
20.
W.
Wang
,
I.
Perovic
,
J.
Chittuluru
,
A.
Kaganovich
,
L. T.
Nguyen
,
J.
Liao
,
J. R.
Auclair
,
D.
Johnson
,
A.
Landeru
, and
A. K.
Simorellis
, “
A soluble α-synuclein construct forms a dynamic tetramer
,”
Proc. Natl. Acad. Sci. U. S. A.
108
,
17797
17802
(
2011
).
21.
O. M.
El-Agnaf
,
S. A.
Salem
,
K. E.
Paleologou
,
M. D.
Curran
,
M. J.
Gibson
,
M. G.
Schlossmacher
, and
D.
Allsop
, “
Detection of oligomeric forms of α-synuclein protein in human plasma as a potential biomarker for Parkinson’s disease
,”
FASEB J.
20
,
419
425
(
2006
).
22.
C.
Olanow
and
W.
Tatton
, “
Etiology and pathogenesis of Parkinson’s disease
,”
Annu. Rev. Neurosci.
22
,
123
144
(
1999
).
23.
M.
Jucker
and
L. C.
Walker
, “
Self-propagation of pathogenic protein aggregates in neurodegenerative diseases
,”
Nature
501
,
45
51
(
2013
).
24.
H.-J.
Lee
and
S.-J.
Lee
, “
Characterization of cytoplasmic α-synuclein aggregates fibril formation is tightly linked to the inclusion-forming process in cells
,”
J. Biol. Chem.
277
,
48976
48983
(
2002
).
25.
M.
Tanaka
,
Y.
Machida
,
Y.
Nishikawa
,
T.
Akagi
,
I.
Morishima
,
T.
Hashikawa
,
T.
Fujisawa
, and
N.
Nukina
, “
The effects of aggregation-inducing motifs on amyloid formation of model proteins related to neurodegenerative diseases
,”
Biochemistry
41
,
10277
10286
(
2002
).
26.
B.
Winner
,
R.
Jappelli
,
S. K.
Maji
,
P. A.
Desplats
,
L.
Boyer
,
S.
Aigner
,
C.
Hetzer
,
T.
Loher
,
M.
Vilar
, and
S.
Campioni
, “
In vivo demonstration that α-synuclein oligomers are toxic
,”
Proc. Natl. Acad. Sci. U. S. A.
108
,
4194
(
2011
).
27.
A.
Der-Sarkissian
,
C. C.
Jao
,
J.
Chen
, and
R.
Langen
, “
Structural organization of α-synuclein fibrils studied by site-directed spin labeling
,”
J. Biol. Chem.
278
,
37530
37535
(
2003
).
28.
B.
Fauvet
,
M.-B.
Fares
,
F.
Samuel
,
I.
Dikiy
,
A.
Tandon
,
D.
Eliezer
, and
H. A.
Lashuel
, “
Characterization of semisynthetic and naturally nα-acetylated α-synuclein in vitro and in intact cells implications for aggregation and cellular properties of α-synuclein
,”
J. Biol. Chem.
287
,
28243
28262
(
2012
).
29.
P. J.
Muchowski
and
J. L.
Wacker
, “
Modulation of neurodegeneration by molecular chaperones
,”
Nat. Rev. Neurosci.
6
,
11
22
(
2005
).
30.
M.
Cookson
, “
α-synuclein and neuronal cell death
,”
Mol. Neurodegener.
4
,
9
(
2009
).
31.
V. N.
Uversky
and
A. K.
Dunker
, “
Understanding protein non-folding
,”
Biochim. Biophys. Acta, Proteins Proteomics
1804
,
1231
1264
(
2010
).
32.
N.
Plotegher
,
E.
Greggio
,
M.
Bisaglia
, and
L.
Bubacco
, “
Biophysical groundwork as a hinge to unravel the biology of α-synuclein aggregation and toxicity
,”
Q. Rev. Biophys.
47
,
1
48
(
2014
).
33.
C. O.
Fernndez
,
W.
Hoyer
,
M.
Zweckstetter
,
E. A.
Jaresrijman
,
V.
Subramaniam
,
C.
Griesinger
, and
T. M.
Jovin
, “
NMR of α-synuclein polyamine complexes elucidates the mechanism and kinetics of induced aggregation
,”
EMBO J.
23
,
2039
2046
(
2004
).
34.
W.
Hoyer
,
D.
Cherny
,
V.
Subramaniam
, and
T. M.
Jovin
, “
Impact of the acidic C-terminal region comprising amino acids 109-140 on α-synuclein aggregation in vitro
,”
Biochemistry
43
,
16233
16242
(
2004
).
35.
P.
Bernad
,
C. W.
Bertoncini
,
C.
Griesinger
,
M.
Zweckstetter
, and
M.
Blackledge
, “
Defining long-range order and local disorder in native α-synuclein using residual dipolar couplings
,”
J. Am. Chem. Soc.
127
,
17968
17969
(
2005
).
36.
C. W.
Bertoncini
,
Y.-S.
Jung
,
C. O.
Fernandez
,
W.
Hoyer
,
C.
Griesinger
,
T. M.
Jovin
, and
M.
Zweckstetter
, “
Release of long-range tertiary interactions potentiates aggregation of natively unstructured α-synuclein
,”
Proc. Natl. Acad. Sci. U. S. A.
102
,
1430
1435
(
2005
).
37.
M.
Sandal
,
F.
Valle
,
I.
Tessari
,
S.
Mammi
,
E.
Bergantino
,
F.
Musiani
,
M.
Brucale
,
L.
Bubacco
, and
B.
Samorì
, “
Conformational equilibria in monomeric α-synuclein at the single-molecule level
,”
PLoS Biol.
6
,
e6
(
2008
).
38.
H.
Heise
,
W.
Hoyer
,
S.
Becker
,
O. C.
Andronesi
,
D.
Riedel
, and
M.
Baldus
, “
Molecular-level secondary structure, polymorphism, and dynamics of full-length α-synuclein fibrils studied by solid-state NMR
,”
Proc. Natl. Acad. Sci. U. S. A.
102
,
15871
15876
(
2005
).
39.
A. J.
Trexler
and
E.
Rhoades
, “
Single molecule characterization of α-synuclein in aggregation-prone states
,”
Biophys. J.
99
,
3048
3055
(
2010
).
40.
M.
Brucale
,
M.
Sandal
,
S.
Di Maio
,
A.
Rampioni
,
I.
Tessari
,
L.
Tosatto
,
M.
Bisaglia
,
L.
Bubacco
, and
B.
Samor
, “
Pathogenic mutations shift the equilibria of α-synuclein single molecules towards structured conformers
,”
ChemBioChem
10
,
176
183
(
2009
).
41.
R.
Hervás
,
J.
Oroz
,
A.
Galera-Prat
,
O.
Goñi
,
A.
Valbuena
,
A. M.
Vera
,
À.
Gómez-Sicilia
,
F.
Losada-Urzáiz
,
V. N.
Uversky
, and
M.
Menéndez
, “
Common features at the start of the neurodegeneration cascade
,”
PLoS Biol.
10
,
e1001335
(
2012
).
42.
V. N.
Uversky
,
J.
Li
, and
A. L.
Fink
, “
Evidence for a partially folded intermediate in α-synuclein fibril formation
,”
J. Biol. Chem.
276
,
10737
10744
(
2001
).
43.
V. N.
Uversky
and
D.
Eliezer
, “
Biophysics of Parkinsons disease: Structure and aggregation of α-synuclein
,”
Curr. Protein Pept. Sci.
10
,
483
(
2009
).
44.
M. M.
Dedmon
,
K.
Lindorff-Larsen
,
J.
Christodoulou
,
M.
Vendruscolo
, and
C. M.
Dobson
, “
Mapping long-range interactions in α-synuclein using spin-label NMR and ensemble molecular dynamics simulations
,”
J. Am. Chem. Soc.
127
,
476
477
(
2004
).
45.
D.-P.
Hong
,
W.
Xiong
,
J.-Y.
Chang
, and
C.
Jiang
, “
The role of the C-terminus of human α-synuclein: Intra-disulfide bonds between the C-terminus and other regions stabilize non-fibrillar monomeric isomers
,”
FEBS Lett.
585
,
561
566
(
2011
).
46.
O.
Wise-Scira
,
A.
Dunn
,
A. K.
Aloglu
,
I. T.
Sakallioglu
, and
O.
Coskuner
, “
Structures of the E46K mutant-type α-synuclein protein and impact of E46K mutation on the structures of the wild-type α-synuclein protein
,”
ACS Chem. Neurosci.
4
,
498
508
(
2013
).
47.
T. D.
Kim
,
S. R.
Paik
, and
C.-H.
Yang
, “
Structural and functional implications of C-terminal regions of α-synuclein
,”
Biochemistry
41
,
13782
13790
(
2002
).
48.
R. A.
Crowther
,
R.
Jakes
,
M. G.
Spillantini
, and
M.
Goedert
, “
Synthetic filaments assembled from C-terminally truncated α-synuclein
,”
FEBS Lett.
436
,
309
312
(
1998
).
49.
S.
McClendon
,
C. C.
Rospigliosi
, and
D.
Eliezer
, “
Charge neutralization and collapse of the C-terminal tail of α-synuclein at low pH
,”
Protein Sci.
18
,
1531
1540
(
2009
).
50.
J. R.
Allison
,
P.
Varnai
,
C. M.
Dobson
, and
M.
Vendruscolo
, “
Determination of the free energy landscape of α-synuclein using spin label nuclear magnetic resonance measurements
,”
J. Am. Chem. Soc.
131
,
18314
18326
(
2009
).
51.
K.-P.
Wu
,
D. S.
Weinstock
,
C.
Narayanan
,
R. M.
Levy
, and
J.
Baum
, “
Structural reorganization of α-synuclein at low pH observed by NMR and REMD simulations
,”
J. Mol. Biol.
391
,
784
796
(
2009
).
52.
O.
Ullman
,
C. K.
Fisher
, and
C. M.
Stultz
, “
Explaining the structural plasticity of α-synuclein
,”
J. Am. Chem. Soc.
133
,
19536
19546
(
2011
).
53.
S. Æ.
Jónsson
,
S.
Mohanty
, and
A.
Irbäck
, “
Distinct phases of free α-synucleina Monte Carlo study
,”
Proteins: Struct., Funct., Bioinf.
80
,
2169
2177
(
2012
).
54.
A.
Nath
,
M.
Sammalkorpi
,
D. C.
DeWitt
,
A. J.
Trexler
,
S.
Elbaum-Garfinkle
,
C. S.
Oern
, and
E.
Rhoades
, “
The conformational ensembles of α-synuclein and tau: Combining single-molecule FRET and simulations
,”
Biophys. J.
103
,
1940
1949
(
2012
).
55.
S.
Esteban-Martin
,
J.
Silvestre-Ryan
,
C.
Bertoncini
, and
X.
Salvatella
, “
Identification of fibril-like tertiary contacts in soluble monomeric α-synuclein
,”
Biophys. J.
105
,
1192
1198
(
2013
).
56.
J.
Yu
,
S.
Malkova
, and
Y. L.
Lyubchenko
, “
α-synuclein misfolding: Single molecule AFM force spectroscopy study
,”
J. Mol. Biol.
384
,
992
1001
(
2008
).
57.
G.
Veldhuis
,
I.
Segers-Nolten
,
E.
Ferlemann
, and
V.
Subramaniam
, “
Single-molecule FRET reveals structural heterogeneity of SDS-bound α-synuclein
,”
ChemBioChem
10
,
436
439
(
2009
).
58.
A. C. M.
Ferreon
,
Y.
Gambin
,
E. A.
Lemke
, and
A. A.
Deniz
, “
Interplay of α-synuclein binding and conformational switching probed by single-molecule fluorescence
,”
Proc. Natl. Acad. Sci. U. S. A.
106
,
5645
5650
(
2009
).
59.
A. C. M.
Ferreon
,
C. R.
Moran
,
Y.
Gambin
, and
A. A.
Deniz
, “
Single-molecule fluorescence studies of intrinsically disordered proteins
,” in
Single Molecule Tools: Fluorescence Based Approaches, Part A
, edited by
N. G.
Walter
(
Academic Press
,
2010
), Vol.
472
, Chap. 10, pp.
179
204
.
60.
A. K.
Frimpong
,
R. R.
Abzalimov
,
V. N.
Uversky
, and
I. A.
Kaltashov
, “
Characterization of intrinsically disordered proteins with electrospray ionization mass spectrometry: Conformational heterogeneity of α-synuclein
,”
Proteins: Struct., Funct., Bioinf.
78
,
714
722
(
2010
).
61.
Y.
Gambin
,
V.
VanDelinder
,
A. C. M.
Ferreon
,
E. A.
Lemke
,
A.
Groisman
, and
A. A.
Deniz
, “
Visualizing a one-way protein encounter complex by ultrafast single-molecule mixing
,”
Nat. Methods
8
,
239
241
(
2011
).
62.
L.
Breydo
,
J. W.
Wu
, and
V. N.
Uversky
, “
α-synuclein misfolding and Parkinson’s disease
,”
Biochim. Biophys. Acta, Mol. Basis Dis.
1822
,
261
285
(
2012
).
63.
Y.
Yu
,
A.
Mukherjee
,
M. J.
Nilges
,
P.
Hosseinzadeh
,
K. D.
Miner
, and
Y.
Lu
, “
Direct ERP observation of a tyrosyl radical in a functional oxidase model in myoglobin during both h2o2 and o2 reactions
,”
J. Am. Chem. Soc.
136
,
1174
1177
(
2014
).
64.
A.
Solanki
,
K.
Neupane
, and
M. T.
Woodside
, “
Single-molecule force spectroscopy of rapidly fluctuating, marginally stable structures in the intrinsically disordered protein α-synuclein
,”
Phys. Rev. Lett.
112
,
158103
(
2014
).
65.
A. P.
Pawar
,
K. F.
Dubay
,
J.
Zurdo
,
F.
Chiti
,
M.
Vendruscolo
, and
C. M.
Dobson
, “
Prediction of ‘aggregation-prone’ and ‘aggregation-susceptible’ regions in proteins associated with neurodegenerative diseases
,”
J. Mol. Biol.
350
,
379
392
(
2005
).
66.
S. W.
Chen
,
S.
Drakulic
,
E.
Deas
,
M.
Ouberai
,
F. A.
Aprile
,
R.
Arranz
,
S.
Ness
,
C.
Roodveldt
,
T.
Guilliams
, and
E. J.
De-Genst
, “
Structural characterization of toxic oligomers that are kinetically trapped during α-synuclein fibril formation
,”
Proc. Natl. Acad. Sci. U. S. A.
112
,
E1994
(
2015
).
67.
E. A.
Mirecka
,
H.
Shaykhalishahi
,
A.
Gauhar
,
Ş.
Akgül
,
J.
Lecher
,
D.
Willbold
,
M.
Stoldt
, and
W.
Hoyer
, “
Sequestration of a β-hairpin for control of α-synuclein aggregation
,”
Angew. Chem., Int. Ed.
53
,
4227
4230
(
2014
).
68.
K. N.
Huggins
,
M.
Bisaglia
,
L.
Bubacco
,
M.
Tatarek-Nossol
,
A.
Kapurniotu
, and
N. H.
Andersen
, “
Designed hairpin peptides interfere with amyloidogenesis pathways: Fibril formation and cytotoxicity inhibition, interception of the preamyloid state
,”
Biochemistry
50
,
8202
8212
(
2011
).
69.
F.
Rose
,
M.
Hodak
, and
J.
Bernholc
, “
Mechanism of copper (II)-induced misfolding of Parkinson’s disease protein
,”
Sci. Rep.
1
,
11
(
2011
).
70.
D. J.
Watson
,
A. D.
Lander
, and
D. J.
Selkoe
, “
Heparin-binding properties of the amyloidogenic peptides Aβ and Amylin dependence on aggregation state and inhibition by congo red
,”
J. Biol. Chem.
272
,
31617
31624
(
1997
).
71.
D.
Thirumalai
,
D.
Klimov
, and
R.
Dima
, “
Emerging ideas on the molecular basis of protein and peptide aggregation
,”
Curr. Opin. Struct. Biol.
13
,
146
159
(
2003
).
72.
W.
Han
and
Y.-D.
Wu
, “
A strand-loop-strand structure is a possible intermediate in fibril elongation: Long time simulations of amyloid-β peptide (10-35)
,”
J. Am. Chem. Soc.
127
,
15408
15416
(
2005
).
73.
N. L.
Fawzi
,
V.
Chubukov
,
L. A.
Clark
,
S.
Brown
, and
T.
Head-Gordon
, “
Influence of denatured and intermediate states of folding on protein aggregation
,”
Protein Sci.
14
,
993
1003
(
2005
).
74.
N.
L. Fawzi
,
A. H.
Phillips
,
J. Z.
Ruscio
,
M.
Doucleff
,
D. E.
Wemmer
, and
T.
Head-Gordon
, “
Structure and dynamics of the Aβ21–30 peptide from the interplay of NMR experiments and molecular simulations
,”
J. Am. Chem. Soc.
130
,
6145
6158
(
2008
).
75.
G.
Reddy
,
J. E.
Straub
, and
D.
Thirumalai
, “
Influence of preformed asp23- lys28 salt bridge on the conformational fluctuations of monomers and dimers of Aβ peptides with implications for rates of fibril formation
,”
J. Phys. Chem. B
113
,
1162
1172
(
2009
).
76.
S.-H.
Shim
,
R.
Gupta
,
Y. L.
Ling
,
D. B.
Strasfeld
,
D. P.
Raleigh
, and
M. T.
Zanni
, “
Two-dimensional IR spectroscopy and isotope labeling defines the pathway of amyloid formation with residue-specific resolution
,”
Proc. Natl. Acad. Sci. U. S. A.
106
,
6614
6619
(
2009
).
77.
K.
Lindorff-Larsen
,
S.
Piana
,
R. O.
Dror
, and
D. E.
Shaw
, “
How fast-folding proteins fold
,”
Science
334
,
517
520
(
2011
).
78.
L.
Larini
and
J.-E.
Shea
, “
Role of β-hairpin formation in aggregation: The self-assembly of the amyloid-β (25–35) peptide
,”
Biophys. J.
103
,
576
586
(
2012
).
79.
K. A.
Ball
,
A. H.
Phillips
,
D. E.
Wemmer
, and
T.
Head-Gordon
, “
Differences in β-strand populations of monomeric Aβ40 and Aβ42
,”
Biophys. J.
104
,
2714
2724
(
2013
).
80.
W.
Han
and
K.
Schulten
, “
Fibril elongation by Aβ17−42: Kinetic network analysis of hybrid-resolution molecular dynamics simulations
,”
J. Am. Chem. Soc.
136
,
12450
12460
(
2014
).
81.
R.
Kruger
,
W.
Kuhn
,
T.
Muller
,
D.
Woitalla
,
M.
Graeber
,
S.
Kosel
,
H.
Przuntek
,
J. T.
Epplen
,
L.
Schols
, and
O.
Riess
, “
Alasopro mutation in the gene encoding α-synuclein in Parkinson’s disease
,”
Nat. Genet.
18
,
106
108
(
1998
).
82.
M. H.
Polymeropoulos
,
C.
Lavedan
,
E.
Leroy
,
S. E.
Ide
,
A.
Dehejia
,
A.
Dutra
,
B.
Pike
,
H.
Root
,
J.
Rubenstein
, and
R.
Boyer
, “
Mutation in the α-synuclein gene identified in families with Parkinson’s disease
,”
Science
276
,
2045
2047
(
1997
).
83.
F.
Soldner
,
J.
Laganiere
,
A. W.
Cheng
,
D.
Hockemeyer
,
Q.
Gao
,
R.
Alagappan
,
V.
Khurana
,
L. I.
Golbe
,
R. H.
Myers
,
S.
Lindquist
,
L.
Zhang
,
D.
Guschin
,
L. K.
Fong
,
B. J.
Vu
,
X.
Meng
,
F. D.
Urnov
,
E. J.
Rebar
,
P. D.
Gregory
,
H. S.
Zhang
, and
R.
Jaenisch
, “
Generation of isogenic pluripotent stem cells differing exclusively at two early onset Parkinson point mutations
,”
Cell
146
,
318
331
(
2011
).
84.
R. B.
Best
,
W.
Zheng
, and
J.
Mittal
, “
Balanced protein–water interactions improve properties of disordered proteins and non-specific protein association
,”
J. Chem. Theory Comput.
10
,
5113
5124
(
2014
).
85.
M.
Knott
and
R. B.
Best
, “
Discriminating binding mechanisms of an intrinsically disordered protein via a multi-state coarse-grained model
,”
J. Chem. Phys.
140
,
175102
(
2014
).
86.
P. S.
Nerenberg
and
T.
Head-Gordon
, “
Optimizing protein- solvent force fields to reproduce intrinsic conformational preferences of model peptides
,”
J. Chem. Theory Comput.
7
,
1220
1230
(
2011
).
87.
P. H.
Nguyen
,
M. S.
Li
,
G.
Stock
,
J. E.
Straub
, and
D.
Thirumalai
, “
Monomer adds to preformed structured oligomers of aβ-peptides by a two-stage dock–lock mechanism
,”
Proc. Natl. Acad. Sci. U. S. A.
104
,
111
116
(
2007
).
88.
B.
Tarus
,
J. E.
Straub
, and
D.
Thirumalai
, “
Dynamics of asp23-lys28 salt-bridge formation in Aβ10−35 monomers
,”
J. Am. Chem. Soc.
128
,
16159
16168
(
2006
).
89.
W.
Han
and
K.
Schulten
, “
Further optimization of a hybrid united-atom and coarse-grained force field for folding simulations: Improved backbone hydration and interactions between charged side chains
,”
J. Chem. Theory Comput.
8
,
4413
4424
(
2012
).
90.
W.
Han
and
K.
Schulten
, “
Characterization of folding mechanisms of Trp-cage and WW-domain by network analysis of simulations with a hybrid-resolution model
,”
J. Phys. Chem. B
117
,
13367
13377
(
2013
).
91.
W.
Han
,
C.-K.
Wan
,
F.
Jiang
, and
Y.-D.
Wu
, “
Pace force field for protein simulations. 1. Full parameterization of version 1 and verification
,”
J. Chem. Theory Comput.
6
,
3373
3389
(
2010
).
92.
W.
Han
and
Y.-D.
Wu
, “
Coarse-grained protein model coupled with a coarse-grained water model: Molecular dynamics study of polyalanine-based peptides
,”
J. Chem. Theory Comput.
3
,
2146
2161
(
2007
).
93.
F.
Jiang
,
W.
Han
, and
Y.-D.
Wu
, “
Influence of side chain conformations on local conformational features of amino acids and implication for force field development
,”
J. Phys. Chem. B
114
,
5840
5850
(
2010
).
94.
C.-Y.
Zhou
,
F.
Jiang
, and
Y.-D.
Wu
, “
Residue-specific force field based on protein coil library. RSFF2: Modification of AMBER FF99SB
,”
J. Phys. Chem. B
119
,
1035
1047
(
2014
).
95.
S.
Li
and
A. H.
Elcock
, “
A residue-specific force field (RSFF2) improves the modeling of conformational behavior of peptides and proteins
,”
J. Phys. Chem. Lett.
6
,
2127
(
2015
).
96.
W. L.
Jorgensen
,
J.
Chandrasekhar
,
J. D.
Madura
,
R. W.
Impey
, and
M. L.
Klein
, “
Comparison of simple potential functions for simulating liquid water
,”
J. Chem. Phys.
79
,
926
935
(
1983
).
97.
A. D.
MacKerell
, Jr.
,
D.
Bashford
,
M.
Bellott
,
J. R. L.
Dunbrack
,
J.
Evanseck
,
M. J.
Field
,
S.
Fischer
,
J.
Gao
,
H.
Guo
,
S.
Ha
,
D.
Joseph
,
L.
Kuchnir
,
K.
Kuczera
,
F. T. K.
Lau
,
C.
Mattos
,
S.
Michnick
,
T.
Ngo
,
D. T.
Nguyen
,
B.
Prodhom
,
B.
Roux
,
M.
Schlenkrich
,
J.
Smith
,
R.
Stote
,
J.
Straub
,
M.
Watanabe
,
J.
Wiorkiewicz-Kuczera
,
D.
Yin
, and
M.
Karplus
, “
Self-consistent parameterization of biomolecules for molecular modeling and condensed phase simulations
,”
FASEB J.
6
,
A143
(
1992
).
98.
A. D.
MacKerell
, Jr.
,
D.
Bashford
,
M.
Bellott
,
R. L.
Dunbrack
, Jr.
,
J. D.
Evanseck
,
M. J.
Field
,
S.
Fischer
,
J.
Gao
,
H.
Guo
,
S.
Ha
,
D.
Joseph
,
L.
Kuchnir
,
K.
Kuczera
,
F. T. K.
Lau
,
C.
Mattos
,
S.
Michnick
,
T.
Ngo
,
D. T.
Nguyen
,
B.
Prodhom
,
I. W. E.
Reiher
,
B.
Roux
,
M.
Schlenkrich
,
J.
Smith
,
R.
Stote
,
J.
Straub
,
M.
Watanabe
,
J.
Wiorkiewicz-Kuczera
,
D.
Yin
, and
M.
Karplus
, “
All-atom empirical potential for molecular modeling and dynamics studies of proteins
,”
J. Phys. Chem. B
102
,
3586
3616
(
1998
).
99.
A. D.
MacKerell
, Jr.
,
M.
Feig
, and
C. L.
Brooks
III
, “
Extending the treatment of backbone energetics in protein force fields: Limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations
,”
J. Comput. Chem.
25
,
1400
1415
(
2004
).
100.
See supplementary material at http://dx.doi.org/10.1063/1.4936910 for proposed α-synuclein aggregation mechanism, structural features ofα-synuclein, original data, and analysis parameters.
101.
L.
Monticelli
,
S. K.
Kandasamy
,
X.
Periole
,
R. G.
Larson
,
D. P.
Tieleman
, and
S.-J.
Marrink
, “
The martini coarse-grained force field: Extension to proteins
,”
J. Chem. Theory Comput.
4
,
819
834
(
2008
).
102.
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
, “
VMD—Visual molecular dynamics
,”
J. Mol. Graphics
14
,
33
38
(
1996
).
103.
Y.
Qi
,
X.
Cheng
,
W.
Han
,
S.
Jo
,
K.
Schulten
, and
W.
Im
, “
CHARMM-GUI PACE CG builder for solution, micelle, and bilayer coarse-grained simulations
,”
J. Chem. Inf. Model.
54
,
1003
1009
(
2014
).
104.
G. J.
Martyna
,
D. J.
Tobias
, and
M. L.
Klein
, “
Constant pressure molecular dynamics algorithms
,”
J. Chem. Phys.
101
,
4177
4189
(
1994
).
105.
J. C.
Phillips
,
R.
Braun
,
W.
Wang
,
J.
Gumbart
,
E.
Tajkhorshid
,
E.
Villa
,
C.
Chipot
,
R. D.
Skeel
,
L.
Kale
, and
K.
Schulten
, “
Scalable molecular dynamics with NAMD
,”
J. Comput. Chem.
26
,
1781
1802
(
2005
).
106.
J. D.
Chodera
,
N.
Singhal
,
V. S.
Pande
,
K. A.
Dill
, and
W. C.
Swope
, “
Automatic discovery of metastable states for the construction of Markov models of macromolecular conformational dynamics
,”
J. Chem. Phys.
126
,
155101
(
2007
).
107.
V. A.
Voelz
,
G. R.
Bowman
,
K.
Beauchamp
, and
V. S.
Pande
, “
Molecular simulation of ab initio protein folding for a millisecond folder NTL9 (1- 39)
,”
J. Am. Chem. Soc.
132
,
1526
1528
(
2010
).
108.
A.
Dusa
,
J.
Kaylor
,
S.
Edridge
,
N.
Bodner
,
D.-P.
Hong
, and
A. L.
Fink
, “
Characterization of oligomers during α-synuclein aggregation using intrinsic tryptophan fluorescence
,”
Biochemistry
45
,
2752
2760
(
2006
).
109.
R.
Bussell
and
D.
Eliezer
, “
Residual structure and dynamics in Parkinson’s disease-associated mutants of α-synuclein
,”
J. Biol. Chem.
276
,
45996
46003
(
2001
).
110.
V. L.
Anderson
,
T. F.
Ramlall
,
C. C.
Rospigliosi
,
W. W.
Webb
, and
D.
Eliezer
, “
Identification of a helical intermediate in trifluoroethanol-induced α-synuclein aggregation
,”
Proc. Natl. Acad. Sci. U. S. A.
107
,
18850
18855
(
2010
).
111.
N. C.
Maiti
,
M. M.
Apetri
,
M. G.
Zagorski
,
P. R.
Carey
, and
V. E.
Anderson
, “
Raman spectroscopic characterization of secondary structure in natively unfolded proteins: α-synuclein
,”
J. Am. Chem. Soc.
126
,
2399
2408
(
2004
).
112.
D.
Ghosh
,
P. K.
Singh
,
S.
Sahay
,
N. N.
Jha
,
R. S.
Jacob
,
S.
Sen
,
A.
Kumar
,
R.
Riek
, and
S. K.
Maji
, “
Structure based aggregation studies reveal the presence of helix-rich intermediate during [agr]-synuclein aggregation
,”
Sci. Rep.
5
,
9228
(
2015
).
113.
D.-P.
Hong
,
A. L.
Fink
, and
V. N.
Uversky
, “
Structural characteristics of α-synuclein oligomers stabilized by the flavonoid baicalein
,”
J. Mol. Biol.
383
,
214
223
(
2008
).
114.
J. N.
Rao
,
Y. E.
Kim
,
L. S.
Park
, and
T. S.
Ulmer
, “
Effect of pseudorepeat rearrangement on α-synuclein misfolding, vesicle binding, and micelle binding
,”
J. Mol. Biol.
390
,
516
529
(
2009
).
115.
C.
Lendel
and
P.
Damberg
, “
3D J-resolved NMR spectroscopy for unstructured polypeptides: Fast measurement of 3JHNHα coupling constants with outstanding spectral resolution
,”
J. Biomol. NMR
44
,
35
42
(
2009
).
116.
B.
Han
,
Y.
Liu
,
S. W.
Ginzinger
, and
D. S.
Wishart
, “
Shiftx2: Significantly improved protein chemical shift prediction
,”
J. Biomol. NMR
50
,
43
57
(
2011
).
117.
S.
Piana
,
A. G.
Donchev
,
P.
Robustelli
, and
D. E.
Shaw
, “
Water dispersion interactions strongly influence simulated structural properties of disordered protein states
,”
J. Phys. Chem. B
119
,
5113
(
2015
).
118.
A. S.
Morar
,
A.
Olteanu
,
G. B.
Young
, and
G. J.
Pielak
, “
Solvent-induced collapse of α-synuclein and acid-denatured cytochrome c
,”
Protein Sci.
10
,
2195
2199
(
2001
).
119.
S.
Müller-Späth
,
A.
Soranno
,
V.
Hirschfeld
,
H.
Hofmann
,
S.
Rüegger
,
L.
Reymond
,
D.
Nettels
, and
B.
Schuler
, “
Charge interactions can dominate the dimensions of intrinsically disordered proteins
,”
Proc. Natl. Acad. Sci. U. S. A.
107
,
14609
14614
(
2010
).
120.
M.
Schwalbe
,
V.
Ozenne
,
S.
Bibow
,
M.
Jaremko
,
L.
Jaremko
,
M.
Gajda
,
M. R.
Jensen
,
J.
Biernat
,
S.
Becker
, and
E.
Mandelkow
, “
Predictive atomic resolution descriptions of intrinsically disordered hTau40 and α-synuclein in solution from NMR and small angle scattering
,”
Structure
22
,
238
249
(
2014
).
121.
S.
Zibaee
,
O. S.
Makin
,
M.
Goedert
, and
L. C.
Serpell
, “
A simple algorithm locates β-strands in the amyloid fibril core of α-synuclein, Aβ, and tau using the amino acid sequence alone
,”
Protein Sci.
16
,
906
918
(
2007
).
122.
K.
Pearson
, “
Note on regression and inheritance in the case of two parents
,”
Proc. R. Soc. London
58
,
240
242
(
1895
).
123.
N. G.
Sgourakis
,
Y.
Yan
,
S. A.
McCallum
,
C.
Wang
, and
A. E.
Garcia
, “
The Alzheimer’s peptides Aβ40 and 42 adopt distinct conformations in water: A combined MD/NMR study
,”
J. Mol. Biol.
368
,
1448
1457
(
2007
).
124.
N. G.
Sgourakis
,
M.
Merced-Serrano
,
C.
Boutsidis
,
P.
Drineas
,
Z.
Du
,
C.
Wang
, and
A. E.
Garcia
, “
Atomic-level characterization of the ensemble of the Aβ (1–42) monomer in water using unbiased molecular dynamics simulations and spectral algorithms
,”
J. Mol. Biol.
405
,
570
583
(
2011
).
125.
M. D.
Smith
, “
Influence of aqueous-salt conditions on the structure and dynamics of the monomeric and novel dimeric forms of the Alzheimer’s Aβ21-30 protein fragment
,” Ph.D. thesis,
Drexel University
,
2014
.
126.
A. K.
Somavarapu
and
K. P.
Kepp
, “
The dependence of amyloid-β dynamics on protein force fields and water models
,”
ChemPhysChem
16
,
3278
(
2015
).
127.
R. M.
Fesinmeyer
,
F. M.
Hudson
, and
N. H.
Andersen
, “
Enhanced hairpin stability through loop design: The case of the protein G B1 domain hairpin
,”
J. Am. Chem. Soc.
126
,
7238
7243
(
2004
).
128.
K. A.
Olsen
,
R. M.
Fesinmeyer
,
J. M.
Stewart
, and
N. H.
Andersen
, “
Hairpin folding rates reflect mutations within and remote from the turn region
,”
Proc. Natl. Acad. Sci. U. S. A.
102
,
15483
15487
(
2005
).
129.
B. I.
Giasson
,
I. V.
Murray
,
J. Q.
Trojanowski
, and
V. M.-Y.
Lee
, “
A hydrophobic stretch of 12 amino acid residues in the middle of α-synuclein is essential for filament assembly
,”
J. Biol. Chem.
276
,
2380
2386
(
2001
).
130.
O.
El-Agnaf
and
G.
Irvine
, “
Aggregation and neurotoxicity of α-synuclein and related peptides
,”
Biochem. Soc. Trans.
30
,
559
565
(
2002
).
131.
C.
Del Mar
,
E. A.
Greenbaum
,
L.
Mayne
,
S. W.
Englander
, and
V. L.
Woods
, “
Structure and properties of α-synuclein and other amyloids determined at the amino acid level
,”
Proc. Natl. Acad. Sci. U. S. A.
102
,
15477
15482
(
2005
).
132.
D.
Klimov
and
D.
Thirumalai
, “
Mechanisms and kinetics of β-hairpin formation
,”
Proc. Natl. Acad. Sci. U. S. A.
97
,
2544
2549
(
2000
).
133.
N.
Mousseau
and
P.
Derreumaux
, “
Exploring energy landscapes of protein folding and aggregation
,”
Front. Biosci.
13
,
4495
4516
(
2008
).
134.
V.
Munoz
,
P. A.
Thompson
,
J.
Hofrichter
, and
W. A.
Eaton
, “
Folding dynamics and mechanism of β-hairpin formation
,”
Nature
390
,
196
199
(
1997
).
135.
C.
Chen
and
Y.
Xiao
, “
Observation of multiple folding pathways of β-hairpin trpzip2 from independent continuous folding trajectories
,”
Bioinformatics
24
,
659
665
(
2008
).
136.
D. E.
Shaw
,
P.
Maragakis
,
K.
Lindorff-Larsen
,
S.
Piana
,
R. O.
Dror
,
M. P.
Eastwood
,
J. A.
Bank
,
J. M.
Jumper
,
J. K.
Salmon
, and
Y.
Shan
, “
Atomic-level characterization of the structural dynamics of proteins
,”
Science
330
,
341
346
(
2010
).
137.
S.
Piana
,
K.
Sarkar
,
K.
Lindorff-Larsen
,
M.
Guo
,
M.
Gruebele
, and
D. E.
Shaw
, “
Computational design and experimental testing of the fastest-folding β-sheet protein
,”
J. Mol. Biol.
405
,
43
48
(
2011
).
138.
D.
Klimov
,
D.
Newfield
, and
D.
Thirumalai
, “
Simulations of β-hairpin folding confined to spherical pores using distributed computing
,”
Proc. Natl. Acad. Sci. U. S. A.
99
,
8019
8024
(
2002
).
139.
D.
De Sancho
,
J.
Mittal
, and
R. B.
Best
, “
Folding kinetics and unfolded state dynamics of the GB1 hairpin from molecular simulation
,”
J. Chem. Theory Comput.
9
,
1743
1753
(
2013
).
140.
R. B.
Best
and
J.
Mittal
, “
Microscopic events in β-hairpin folding from alternative unfolded ensembles
,”
Proc. Natl. Acad. Sci. U. S. A.
108
,
11087
11092
(
2011
).
141.
R. B.
Best
and
J.
Mittal
, “
Free-energy landscape of the GB1 hairpin in all-atom explicit solvent simulations with different force fields: Similarities and differences
,”
Proteins: Struct., Funct., Bioinf.
79
,
1318
1328
(
2011
).
142.
T.
Head-Gordon
,
M.
Head-Gordon
,
M. J.
Frisch
,
C. L.
Brooks III
, and
J. A.
Pople
, “
Theoretical study of blocked glycine and alanine peptide analogs
,”
J. Am. Chem. Soc.
113
,
5989
5997
(
1991
).
143.
S. R.
Trevino
,
S.
Schaefer
,
J. M.
Scholtz
, and
C. N.
Pace
, “
Increasing protein conformational stability by optimizing β-turn sequence
,”
J. Mol. Biol.
373
,
211
218
(
2007
).
144.
G. D.
Rose
,
L. M.
Glerasch
, and
J. A.
Smith
, “
Turns in peptides and proteins
,”
Adv. Protein Chem.
37
,
1
109
(
1985
).
145.
E. G.
Hutchinson
and
J. M.
Thornton
, “
A revised set of potentials for β-turn formation in proteins
,”
Protein Sci.
3
,
2207
2216
(
1994
).
146.
J. J.
Zarranz
,
J.
Alegre
,
J. C.
Gómez-Esteban
,
E.
Lezcano
,
R.
Ros
,
I.
Ampuero
,
L.
Vidal
,
J.
Hoenicka
,
O.
Rodriguez
,
B.
Atarés
 et al., “
The new mutation, E46K, of α-synuclein causes Parkinson and Lewy body dementia
,”
Ann. Neurol.
55
,
164
173
(
2004
).
147.
R. L.
Croke
,
C. O.
Sallum
,
E.
Watson
,
E. D.
Watt
, and
A. T.
Alexandrescu
, “
Hydrogen exchange of monomeric α-synuclein shows unfolded structure persists at physiological temperature and is independent of molecular crowding in Escherichia coli
,”
Protein Sci.
17
,
1434
1445
(
2008
).

Supplementary Material

You do not currently have access to this content.