We address the question of how reducing the number of degrees of freedom modifies the interfacial thermodynamic properties of heterogeneous solid-liquid systems. We consider the example of n-hexane interacting with multi-layer graphene which we model both with fully atomistic and coarse-grained (CG) models. The CG models are obtained by means of the conditional reversible work (CRW) method. The interfacial thermodynamics of these models is characterized by the solid-liquid work of adhesion WSL calculated by means of the dry-surface methodology through molecular dynamics simulations. We find that the CRW potentials lead to values of WSL that are larger than the atomistic ones. Clear understanding of the relationship between the structure of n-hexane in the vicinity of the surface and WSL is elucidated through a detailed study of the energy and entropy components of WSL. We highlight the crucial role played by the solid-liquid energy fluctuations. Our approach suggests that CG potentials should be designed in such a way that they preserve the range of solid-liquid interaction energies, but also their fluctuations in order to preserve the reference atomistic value of WSL. Our study thus opens perspectives into deriving CG interaction potentials that preserve the thermodynamics of solid-liquid contacts and will find application in studies that intend to address materials driven by interfaces.

1.
A. C.
Balazs
,
T.
Emrick
, and
T. P.
Russell
,
Science
314
,
1107
1110
(
2006
).
2.
M.
Moniruzzaman
and
K. I.
Winey
,
Macromolecules
39
(
16
),
5194
5205
(
2006
).
3.
P. M.
Ajayan
and
J. M.
Tour
,
Nature
447
(
7148
),
1066
1068
(
2007
).
4.
M.
Okamoto
,
Mater. Sci. Technol.
22
(
7
),
756
779
(
2006
).
5.
G. S.
Grest
and
K.
Kremer
,
Phys. Rev. A
33
(
5
),
3628
3631
(
1986
).
6.
J.
Sarabadani
,
A.
Milchev
, and
T. A.
Vilgis
,
J. Chem. Phys.
141
(
4
),
044907
(
2014
).
7.
J.
Baschnagel
,
K.
Binder
,
P.
Doruker
,
A. A.
Gusev
,
O.
Hahn
,
K.
Kremer
,
W. L.
Mattice
,
F.
Müller-Plathe
,
M.
Murat
,
W.
Paul
,
S.
Santos
,
U. W.
Suter
, and
V.
Tries
,
Adv. Polym. Sci.
152
,
41
156
(
2000
).
8.
T.
Murtola
,
A.
Bunker
,
I.
Vattulainen
,
M.
Deserno
, and
M.
Karttunen
,
Phys. Chem. Chem. Phys.
11
(
12
),
1869
1892
(
2009
).
9.
C.
Peter
and
K.
Kremer
,
Faraday Discuss.
144
,
9
(
2010
).
10.
L. Y.
Lu
and
G. A.
Voth
,
Adv. Chem. Phys.
149
,
47
81
(
2012
).
11.
E.
Brini
,
E. A.
Algaer
,
P.
Ganguly
,
C.
Li
,
F.
Rodriguez-Ropero
, and
N. F. A.
van der Vegt
,
Soft Matter
9
,
2108
(
2013
).
12.
S.
Riniker
,
J. R.
Allison
, and
W. F.
van Gunsteren
,
Phys. Chem. Chem. Phys.
14
(
36
),
12423
12430
(
2012
).
13.
W. G.
Noid
,
J. Chem. Phys.
139
(
9
),
090901
(
2013
).
14.
S. J.
Marrink
,
H. J.
Risselada
,
S.
Yefimov
,
D. P.
Tieleman
, and
A.H.
de Vries
,
J. Phys. Chem. B
111
,
7812
7824
(
2007
).
15.
S. O.
Nielsen
,
G.
Srinivas
, and
M. L.
Klein
,
J. Chem. Phys.
123
,
124907
(
2005
).
16.
E.
Forte
,
A. J.
Haslam
,
G.
Jackson
, and
E. A.
Müller
,
Phys. Chem. Chem. Phys.
16
,
19165
19180
(
2014
).
17.
M.
Müller
,
B.
Steinmüller
,
K. C.
Daoulas
,
A.
Ramírez-Hernández
, and
J.J.
de Pablo
,
Phys. Chem. Chem. Phys.
13
,
10491
10502
(
2011
).
18.
K.
Johnston
,
R. M.
Nieminen
, and
K.
Kremer
,
Soft Matter
7
,
6457
(
2011
).
19.
L.
Delle Site
,
C. F.
Abrams
,
A.
Alavi
, and
K.
Kremer
,
Phys. Rev. Lett.
89
,
156103
(
2002
).
20.
L.
Delle Site
,
S.
Leon
, and
K.
Kremer
,
J. Am. Chem. Soc.
126
(
9
),
2944
2955
(
2004
).
21.
K.
Johnston
and
V.
Harmandaris
,
Macromolecules
46
,
5741
5750
(
2013
).
22.
A.
Ghanbari
,
T. V. M.
Ndoro
,
F.
Leroy
,
M.
Rahimi
,
M. C.
Böhm
, and
F.
Müller-Plathe
,
Macromolecules
45
(
1
),
572
584
(
2012
).
23.
M.
Fukuda
,
H.
Zhang
,
T.
Ishiguro
,
K.
Fukuzawa
, and
S.
Itoh
,
J. Chem. Phys.
139
,
054901
(
2013
).
24.
T. T.
Foley
,
M. S.
Shell
, and
W. G.
Noid
,
J. Chem. Phys.
143
,
243104
(
2015
).
25.
E.
Brini
,
V.
Marcon
, and
N. F. A.
van der Vegt
,
Phys. Chem. Chem. Phys.
13
,
10468
10474
(
2011
).
26.
F.
Leroy
and
F.
Müller-Plathe
,
Langmuir
31
,
8335
8345
(
2015
).
27.
Z.
Liu
,
K.
Suenaga
,
P. J. F.
Harris
, and
S.
Iijima
,
Phys. Rev. Lett.
102
(
1
),
015501
(
2009
).
28.
J. K.
Lee
,
S. C.
Lee
,
J. P.
Ahn
,
S. C.
Kim
,
J. I. B.
Wilson
, and
P.
John
,
J. Chem. Phys.
129
(
23
),
234709
(
2008
).
29.
J.
Tersoff
,
Phys. Rev. Lett.
61
(
25
),
2879
2882
(
1988
).
30.
S.
Plimpton
,
J. Comput. Phys.
117
(
1
),
1
19
(
1995
).
31.
H. J. C.
Berendsen
,
J. P. M.
Postma
,
W. F.
van Gunsteren
,
A.
Dinola
, and
J. R.
Haak
,
J. Chem. Phys.
81
(
8
),
3684
3690
(
1984
).
32.
W. L.
Jorgensen
,
D. S.
Maxwell
, and
J.
Tirado-Rives
,
J. Am. Chem. Soc.
118
,
11225
11236
(
1996
).
33.
L.
Martinez
,
R.
Andrade
,
E. G.
Birgin
, and
J. M.
Martínez
,
J. Comput. Chem.
30
,
2157
2164
(
2009
).
34.
G. J.
Gloor
,
G.
Jackson
,
F. J.
Blas
, and
E.
de Miguel
,
J. Chem. Phys.
123
(
13
),
134703
(
2005
).
35.
E.
Brini
and
N. F. A.
van der Vegt
,
J. Chem. Phys.
137
,
154113
(
2012
).
36.
G.
Deichmann
,
V.
Marcon
, and
N. F. A.
van der Vegt
,
J. Chem. Phys.
141
,
224109
(
2014
).
37.
P.
Ganguly
,
D.
Mukherji
,
C.
Junghans
, and
N. F. A.
van der Vegt
,
J. Chem. Theory Comput.
8
,
1802
1807
(
2012
).
38.
D.
Reith
,
M.
Pütz
, and
F.
Müller-Plathe
,
J. Comput. Chem.
24
,
1624
1636
(
2003
).
39.
A.
Lyubartsev
and
A.
Laaksonen
,
Phys. Rev. E
52
,
3730
3737
(
1995
).
40.
W. G.
Noid
,
J.-W.
Chu
,
G. S.
Ayton
,
V.
Krishna
,
S.
Izvekov
,
G. A.
Voth
,
A.
Das
, and
H. C.
Andersen
,
J. Chem. Phys.
128
,
244114
(
2008
).
41.
B.
Hess
,
C.
Kutzner
,
D.
van der Spoel
, and
E.
Lindahl
,
J. Chem. Theory Comput.
4
,
435
447
(
2008
).
42.
J.-P.
Ryckaert
,
G.
Ciccotti
, and
H. J. C.
Berendsen
,
J. Comput. Phys.
23
,
327
341
(
1977
).
43.
E.
Brini
,
C. R.
Herbers
,
G.
Deichmann
, and
N. F. A.
van der Vegt
,
Phys. Chem. Chem. Phys.
14
,
11896
(
2012
).
44.
Y.
Yoon
,
D.
Kim
, and
J.-B.
Lee
,
Micro Nano Syst. Lett.
2
,
3
(
2014
).
45.
J. N.
Israelachvili
,
Intermolecular and Surface Forces
, 2nd ed. (
Academic Press
,
1991
).
46.
L. J. M.
Schlangen
,
L. K.
Koopal
,
M. A. C.
Stuart
, and
J.
Lyklema
,
Colloids Surf., A
89
(
2-3
),
157
167
(
1994
).
47.
R.
Shuttleworth
,
Proc. Phys. Soc., London, Sect. A
63
(
365
),
444
457
(
1950
).
48.
F.
Leroy
and
F.
Müller-Plathe
,
J. Chem. Phys.
133
(
4
),
044110
(
2010
).
49.
A. P.
Willard
and
D.
Chandler
,
J. Chem. Phys.
141
(
18
),
18C519
(
2014
).
50.
D. M.
Huang
,
P. L.
Geissler
, and
D.
Chandler
,
J. Phys. Chem. B
105
(
28
),
6704
6709
(
2001
).
51.
E. S.
Machlin
,
Langmuir
28
(
49
),
16729
16732
(
2012
).
52.
F.
Taherian
,
F.
Leroy
, and
N. F. A.
van der Vegt
,
Langmuir
29
(
31
),
9807
9813
(
2013
).
53.
F.
Taherian
,
V.
Marcon
,
N. F. A.
van der Vegt
, and
F.
Leroy
,
Langmuir
29
(
5
),
1457
1465
(
2013
).
54.
H. A.
Yu
and
M.
Karplus
,
J. Chem. Phys.
89
(
4
),
2366
2379
(
1988
).
55.
G.
Tocci
,
L.
Joly
, and
A.
Michaelides
,
Nano Lett.
14
,
6872
6877
(
2014
).
56.
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
,
J. Mol. Graphics Modell.
14
(
1
),
33
38
(
1996
).
You do not currently have access to this content.