The bacterial sodium-coupled leucine transporter (LeuT) has been broadly used as a structural model for understanding the structure-dynamics-function of mammalian neurotransmitter transporters as well as other solute carriers that share the same fold (LeuT fold), as the first member of the family crystallographically resolved in multiple states: outward-facing open, outward-facing occluded, and inward-facing open. Yet, a complete picture of the energy landscape of (sub)states visited along the LeuT transport cycle has been elusive. In an attempt to visualize the conformational spectrum of LeuT, we performed extensive simulations of LeuT dimer dynamics in the presence of substrate (Ala or Leu) and co-transported Na+ ions, in explicit membrane and water. We used both conventional molecular dynamics (MD) simulations (with Anton supercomputing machine) and a recently introduced method, collective MD, that takes advantage of collective modes of motions predicted by the anisotropic network model. Free energy landscapes constructed based on ∼40 μs trajectories reveal multiple substates occluded to the extracellular (EC) and/or intracellular (IC) media, varying in the levels of exposure of LeuT to EC or IC vestibules. The IC-facing transmembrane (TM) helical segment TM1a shows an opening, albeit to a smaller extent and in a slightly different direction than that observed in the inward-facing open crystal structure. The study provides insights into the spectrum of conformational substates and paths accessible to LeuT and highlights the differences between Ala- and Leu-bound substates.

1.
T. M.
Jessell
and
E. R.
Kandel
,
Cell
72
,
1
(
1993
).
2.
S. G.
Amara
and
M. J.
Kuhar
,
Annu. Rev. Neurosci.
16
,
73
(
1993
).
3.
L. L.
Iversen
and
J. S.
Kelly
,
Biochem. Pharmacol.
24
,
933
(
1975
).
5.
G. B.
Richerson
and
Y.
Wu
,
Adv. Exp. Med. Biol.
548
,
76
(
2004
).
7.
J.
Andersen
,
A. S.
Kristensen
,
B.
Bang-Andersen
, and
K.
Stromgaard
,
Chem. Commun.
25
,
3677
(
2009
).
8.
R. P.
Clausen
,
K.
Madsen
,
O. M.
Larsson
,
B.
Frolund
,
P.
Krogsgaard-Larsen
, and
A.
Schousboe
,
Adv. Pharmacol.
54
,
265
(
2006
).
9.
M. K.
Hahn
and
R. D.
Blakely
,
Pharmacogenomics J.
2
,
217
(
2002
).
10.
I. D.
Waldman
,
D. C.
Rowe
,
A.
Abramowitz
,
S. T.
Kozel
,
J. H.
Mohr
,
S. L.
Sherman
,
H. H.
Cleveland
,
M. L.
Sanders
,
J. M.
Gard
, and
C.
Stever
,
Am. J. Hum. Genet.
63
,
1767
(
1998
).
11.
J. R.
Shannon
,
N. L.
Flattem
,
J.
Jordan
,
G.
Jacob
,
B. K.
Black
,
I.
Biaggioni
,
R. D.
Blakely
, and
D.
Robertson
,
N. Engl. J. Med.
342
,
541
(
2000
).
12.
I. M.
Anderson
,
J. Affective Disord.
58
,
19
(
2000
).
13.
O.
Berton
and
E. J.
Nestler
,
Nat. Rev. Neurosci.
7
,
137
(
2006
).
14.
A.
Penmatsa
,
K. H.
Wang
, and
E.
Gouaux
,
Nature
503
,
85
(
2013
).
15.
G.
Herting
,
J.
Axelrod
, and
L. G.
Whitby
,
J. Pharmacol. Exp. Ther.
134
,
146
(
1961
).
16.
R. W.
Fuller
,
D. T.
Wong
, and
D. W.
Robertson
,
Med. Res. Rev.
11
,
17
(
1991
).
17.
S. G.
Amara
and
M. S.
Sonders
,
Drug Alcohol Depend.
51
,
87
(
1998
).
18.
H.
Wei
,
E. R.
Hill
, and
H. H.
Gu
,
Neuropharmacology
56
,
399
(
2009
).
19.
A.
Yamashita
,
S. K.
Singh
,
T.
Kawate
,
Y.
Jin
, and
E.
Gouaux
,
Nature
437
,
215
(
2005
).
21.
H.
Krishnamurthy
,
C. L.
Piscitelli
, and
E.
Gouaux
,
Nature
459
,
347
(
2009
).
22.
L. R.
Forrest
,
Y. W.
Zhang
,
M. T.
Jacobs
,
J.
Gesmonde
,
L.
Xie
,
B. H.
Honig
, and
G.
Rudnick
,
Proc. Natl. Acad. Sci. U. S. A.
105
,
10338
(
2008
).
23.
H.
Krishnamurthy
and
E.
Gouaux
,
Nature
481
,
469
(
2012
).
24.
S. K.
Singh
,
C. L.
Piscitelli
,
A.
Yamashita
, and
E.
Gouaux
,
Science
322
,
1655
(
2008
).
25.
M.
Quick
,
A. M.
Winther
,
L.
Shi
,
P.
Nissen
,
H.
Weinstein
, and
J. A.
Javitch
,
Proc. Natl. Acad. Sci. U. S. A.
106
,
5563
(
2009
).
26.
S. K.
Singh
,
A.
Yamashita
, and
E.
Gouaux
,
Nature
448
,
952
(
2007
).
27.
E.
Zomot
,
M.
Gur
, and
I.
Bahar
,
J. Biol. Chem.
290
,
544
(
2015
).
28.
M. H.
Cheng
and
I.
Bahar
,
PLoS Comput. Biol.
10
,
e1003879
(
2014
).
29.
M.
Gur
,
J. D.
Madura
, and
I.
Bahar
,
Biophys. J.
105
,
1643
(
2013
).
30.
A. R.
Atilgan
,
S. R.
Durell
,
R. L.
Jernigan
,
M. C.
Demirel
,
O.
Keskin
, and
I.
Bahar
,
Biophys. J.
80
,
505
(
2001
).
31.
J.
Henin
,
W.
Shinoda
, and
M. L.
Klein
,
J. Phys. Chem. B
112
,
7008
(
2008
).
32.
M.
Buck
,
S.
Bouguet-Bonnet
,
R. W.
Pastor
, and
A. D.
MacKerell
, Jr.
,
Biophys. J.
90
,
L36
L38
(
2006
).
33.
R. B.
Best
,
X.
Zhu
,
J.
Shim
,
P. E.
Lopes
,
J.
Mittal
,
M.
Feig
, and
A. D.
MacKerell
, Jr.
,
J. Chem. Theory Comput.
8
,
3257
(
2012
).
34.
J. C.
Phillips
,
R.
Braun
,
W.
Wang
,
J.
Gumbart
,
E.
Tajkhorshid
,
E.
Villa
,
C.
Chipot
,
R. D.
Skeel
,
L.
Kale
, and
K.
Schulten
,
J. Comput. Chem.
26
,
1781
(
2005
).
35.
D. E.
Shaw
,
M. M.
Deneroff
,
R. O.
Dror
,
J. S.
Kuskin
,
R. H.
Larson
,
J. K.
Salmon
,
C.
Young
,
B.
Batson
,
K. J.
Bowers
,
J. C.
Chao
 et al.,
Commun. ACM
51
,
91
(
2008
).
36.
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
,
J. Mol. Graphics
14
,
33
(
1996
).
37.
J.
Schlitter
,
M.
Engels
, and
P.
Kruger
,
J. Mol. Graphics
12
,
84
(
1994
).
38.
Q.
Cui
and
I.
Bahar
,
Normal Mode Analysis: Theory and Applications to Biological and Chemical Systems
(
Chapman & Hall
,
2005
).
39.
M.
Gur
,
E.
Zomot
, and
I.
Bahar
,
J. Chem. Phys.
139
,
121912
(
2013
).
40.
K.
Kazmier
,
S.
Sharma
,
M.
Quick
,
S. M.
Islam
,
B.
Roux
,
H.
Weinstein
,
J. A.
Javitch
, and
H. S.
Mchaourab
,
Nat. Struct. Mol. Biol.
21
,
472
(
2014
).
41.
J.
Grouleff
,
S.
Sondergaard
,
H.
Koldso
, and
B.
Schiott
,
Biophys. J.
108
,
1390
(
2015
).
42.
M. H.
Cheng
and
I.
Bahar
,
Biophys. J.
105
,
630
(
2013
).
43.
C. L.
Piscitelli
,
H.
Krishnamurthy
, and
E.
Gouaux
,
Nature
468
,
1129
(
2010
).
44.
B.
Isin
,
K.
Schulten
,
E.
Tajkhorshid
, and
I.
Bahar
,
Biophys. J.
95
,
789
(
2008
).
45.
L.
Malinauskaite
,
M.
Quick
,
L.
Reinhard
,
J. A.
Lyons
,
H.
Yano
,
J. A.
Javitch
, and
P.
Nissen
,
Nat. Struct. Mol. Biol.
21
,
1006
(
2014
).
46.
M. H.
Cheng
and
I.
Bahar
,
Structure
23
,
2171
(
2015
).
47.
See supplementary material at http://dx.doi.org/10.1063/1.4936133 for more details.

Supplementary Material

You do not currently have access to this content.