A small but relevant number of proteins whose native structure is known features nontrivial topology, i.e., they are knotted. Understanding the process of folding from a swollen unknotted state to the biologically relevant native conformation is, for these proteins, particularly difficult, due to their rate-limiting topological entanglement. To shed some light into this conundrum, we introduced a structure-based coarse-grained model of the protein, where the information about the folded conformation is encoded in bonded angular interactions only, which do not favor the formation of native contacts. A stochastic search scheme in parameter space is employed to identify a set of interactions that maximizes the probability to attain the knotted state. The optimal knotting pathways of the two smallest knotted proteins, obtained through this approach, are consistent with the results derived by means of coarse-grained as well as full atomistic simulations.

1.
S.
Velankar
,
C.
Best
,
B.
Beuth
,
C. H.
Boutselakis
,
N.
Cobley
,
A. W.
Sousa Da Silva
,
D.
Dimitropoulos
,
A.
Golovin
,
M.
Hirshberg
,
M.
John
,
E. B.
Krissinel
,
R.
Newman
,
T.
Oldfield
,
A.
Pajon
,
C. J.
Penkett
,
J.
Pineda-Castillo
,
G.
Sahni
,
S.
Sen
,
R.
Slowley
,
A.
Suarez-Uruena
,
J.
Swaminathan
,
G.
van Ginkel
,
W. F.
Vranken
,
K.
Henrick
, and
G. J.
Kleywegt
,
Nucleic Acids Res.
38
,
D308
(
2009
).
2.
M.
Jamroz
,
W.
Niemyska
,
E. J.
Rawdon
,
A.
Stasiak
,
K. C.
Millett
,
P.
Sułkowski
, and
J. I.
Sulkowska
,
Nucleic Acids Res.
43
,
D306
(
2014
).
3.
D.
Bölinger
,
J. I.
Sułkowska
,
H. P.
Hsu
,
L. A.
Mirny
,
M.
Kardar
,
J. N.
Onuchic
, and
P.
Virnau
,
PLoS Comput. Biol.
6
,
e1000731
(
2010
).
4.
M. L.
Mansfield
,
Nat. Struct. Biol.
1
,
213
(
1994
).
6.
W. R.
Taylor
and
K.
Lin
,
Nature
421
,
25
(
2003
).
7.
M. A.
Soler
and
P. F. N.
Faisca
,
PLoS One
8
,
e74755
(
2013
).
8.
M. A.
Soler
,
A.
Nunes
, and
P. F. N.
Faisca
,
J. Chem. Phys.
141
,
025101
(
2014
).
9.
R.
Potestio
,
C.
Micheletti
, and
H.
Orland
,
PLoS Comput. Biol.
6
,
e1000864
(
2010
).
10.
R. C.
Lua
and
A. Y.
Grosberg
,
PLoS Comput. Biol.
2
,
e45
(
2006
).
11.
T.
Wüst
,
D.
Reith
, and
P.
Virnau
,
Phys. Rev. Lett.
114
,
028102
(
2015
).
12.
P. F.
Faisca
,
Comput. Struct. Biotechnol. J.
13
,
459
(
2015
).
13.
A. L.
Mallam
and
S. E.
Jackson
,
J. Mol. Biol.
346
,
1409
(
2005
).
14.
A. L.
Mallam
,
E. R.
Morris
, and
S. E.
Jackson
,
Proc. Natl. Acad. Sci. U. S. A.
105
,
18740
(
2008
).
16.
N. C.
Lim
and
S. E.
Jackson
,
J. Mol. Biol.
427
,
248
(
2015
).
17.
P. F. N.
Faisca
,
R. D. M.
Travasso
,
T.
Charters
,
A.
Nunes
, and
M.
Cieplak
,
Phys. Biol.
7
,
016009
(
2010
).
18.
S.
Wallin
,
K. B.
Zeldovich
, and
E. I.
Shakhnovich
,
J. Mol. Biol.
368
,
884
(
2007
).
19.
J. I.
Sułkowska
,
P.
Sułkowski
, and
J.
Onuchic
,
Proc. Natl. Acad. Sci. U. S. A.
106
,
3119
(
2009
).
20.
T.
Škirbić
,
C.
Micheletti
, and
P.
Faccioli
,
PLoS Comput. Biol.
8
,
e1002504
(
2012
).
21.
S.
Beccara
,
T.
Škirbić
,
R.
Covino
,
C.
Micheletti
, and
P.
Faccioli
,
PLoS Comput. Biol.
9
,
e1003002
(
2013
).
22.
R.
Covino
,
T.
Škirbić
,
S. a.
Beccara
,
P.
Faccioli
, and
C.
Micheletti
,
Biomolecules
4
,
1
(
2014
).
23.
A. L.
Mallam
and
S. E.
Jackson
,
J. Mol. Biol.
366
,
650
(
2007
).
24.
A. L.
Mallam
,
S. C.
Onuoha
,
J. G.
Grossmann
, and
S. E.
Jackson
,
Mol. Cell
30
,
642
(
2008
).
25.
M. L.
Mansfield
,
Nat. Struct. Mol. Biol.
4
,
166
(
1997
).
26.
P.
Virnau
,
L. A.
Mirny
, and
M.
Kardar
,
PLoS Comput. Biol.
2
,
e122
(
2006
).
27.
J. K.
Noel
,
J. I.
Sułkowska
, and
J. N.
Onuchic
,
Proc. Natl. Acad. Sci. U. S. A.
107
,
15403
(
2010
).
28.
J. K.
Noel
,
J. N.
Onuchic
, and
J. I.
Sułkowska
,
J. Phys. Chem. Lett.
4
,
3570
(
2013
).
29.
I.
Coluzza
,
P. D. J.
van Oostrum
,
B.
Capone
,
E.
Reimhult
, and
C.
Dellago
,
Soft Matter
9
,
938
(
2013
).
30.
I.
Coluzza
,
P. D. J.
van Oostrum
,
B.
Capone
,
E.
Reimhult
, and
C.
Dellago
,
Phys. Rev. Lett.
110
,
075501
(
2013
).
31.
P.
Virnau
,
A.
Mallam
, and
S.
Jackson
,
J. Phys.: Condens. Matter
23
,
033101
(
2011
).
32.
N.
and
H.
Taketomi
,
Proc. Natl. Acad. Sci. U. S. A.
75
,
559
(
1978
).
33.
R. B.
Best
,
G.
Hummer
, and
W. A.
Eaton
,
Proc. Natl. Acad. Sci. U. S. A.
110
,
17874
(
2013
).
34.
P. F. N.
Faisca
,
A.
Nunes
,
R. D.
Travasso
, and
E. I.
Shakhnovich
,
Protein Sci.
19
,
2196
(
2010
).
35.
G. S.
Grest
and
K.
Kremer
,
Phys. Rev. A
33
,
3628
(
1986
).
36.
J. D.
Weeks
,
D.
Chandler
, and
H. C.
Andersen
,
J. Chem. Phys.
54
,
5237
(
1971
).
37.
J.
Hoste
and
M.
Thistlethwaite
, KNOTFIND, 1999, http://www.math.utk.edu/~morwen/knotscape.html.
38.
L.
Tubiana
,
E.
Orlandini
, and
C.
Micheletti
,
Prog. Theor. Phys. Suppl.
191
,
192
(
2011
).
39.
J. I.
Sułkowska
,
J. K.
Noel
,
C. A.
Ramirez-Sarmiento
,
E. J.
Rawdon
,
K. C.
Millet
, and
J. N.
Onuchic
,
Biochem. Soc. Trans.
41
,
523
(
2013
).
40.
See supplementary material at http://dx.doi.org/10.1063/1.4934541 for the tables listing the values of bending and torsion elastic parameters for protein MJ0366 and virC2 obtained through the force field optimization procedure.

Supplementary Material

You do not currently have access to this content.