We applied a newly proposed prediction method for membrane protein structures to bacteriorhodopsin that has distorted transmembrane helices in the native structure. This method uses an implicit membrane model, which restricts sampling space during folding in a membrane region, and includes helix bending. Replica-exchange simulations were performed with seven transmembrane helices only without a retinal molecule. Obtained structures were classified into clusters of similar structures, which correspond to local-minimum free energy states. The two lowest free energy states corresponded to a native-like structure with the correct empty space for retinal and a structure with this empty space filled with a helix. Previous experiments of bacteriorhodopsin suggested that association of transmembrane helices enables them to make a room for insertion of a retinal. Our results are consistent with these results. Moreover, distortions of helices in the native-like structures were successfully reproduced. In the distortions, whereas the locations of kinks for all helices were similar to those of Protein Data Bank’s data, the amount of bends was more similar for helices away from the retinal than for those close to the retinal in the native structure. This suggests a hypothesis that the amino-acid sequence specifies the location of kinks in transmembrane helices and that the amount of distortions depends on the interactions with the surrounding molecules such as neighboring helices, lipids, and retinal.

1.
S.
Fiedler
,
J.
Broecker
, and
S.
Keller
,
Cell. Mol. Life Sci.
67
,
1779
(
2010
).
3.
R.
Sawada
and
S.
Mitaku
,
J. Biochem.
151
,
189
(
2012
).
4.
G.
Tusnády
,
Z.
Dosztányi
, and
I.
Simon
,
Bioinformatics
20
,
2964
(
2004
).
5.
G.
Tusnády
,
Z.
Dosztányi
, and
I.
Simon
,
Nucleic Acids Res.
33
,
275
(
2005
).
6.
P.
Raman
,
V.
Cherezov
, and
M.
Caffrey
,
Cell. Mol. Life Sci.
63
,
36
(
2006
).
7.
K.
Hukushima
and
K.
Nemoto
,
J. Phys. Soc. Jpn.
65
,
1604
(
1996
).
8.
Y.
Sugita
and
Y.
Okamoto
,
Chem. Phys. Lett.
314
,
141
(
1999
).
9.
Y.
Sugita
,
A.
Kitao
, and
Y.
Okamoto
,
J. Chem. Phys.
113
,
6042
(
2000
).
10.
P.
Liu
,
B.
Kim
,
R. A.
Friesner
, and
B. J.
Berne
,
Proc. Natl. Acad. Sci. U. S. A.
102
,
13749
(
2005
).
11.
A.
Mitsutake
and
Y.
Okamoto
,
J. Chem. Phys.
130
,
214105
(
2009
).
12.
A.
Mitsutake
,
Y.
Sugita
, and
Y.
Okamoto
,
Biopolymers
60
,
96
(
2001
).
13.
W.
Im
,
M.
Feig
, and
C. L.
Brooks
III
,
Biophys. J.
85
,
2900
(
2003
).
14.
S.
Tanizaki
and
M.
Feig
,
J. Chem. Phys.
122
,
124706
(
2005
).
15.
T.
Lazaridis
,
Proteins: Struct., Funct., Bioinf.
58
,
518
(
2005
).
16.
A.
Panahi
and
M.
Feig
,
J. Chem. Theory Comput.
9
,
1709
(
2013
).
17.
H.
Kokubo
and
Y.
Okamoto
,
Chem. Phys. Lett.
383
,
397
(
2004
).
18.
H.
Kokubo
and
Y.
Okamoto
,
J. Chem. Phys.
120
,
10837
(
2004
).
19.
H.
Kokubo
and
Y.
Okamoto
,
J. Phys. Soc. Jpn.
73
,
2571
(
2004
).
20.
H.
Kokubo
and
Y.
Okamoto
,
Chem. Phys. Lett.
392
,
168
(
2004
).
21.
H.
Kokubo
and
Y.
Okamoto
,
Biophys. J.
96
,
765
(
2009
).
22.
J. L.
Popot
and
D. M.
Engelman
,
Annu. Rev. Biochem.
69
,
881
(
2000
).
23.
Y.
Matsui
,
K.
Sakai
,
M.
Murakami
,
Y.
Shiro
,
S.-i.
Adachi
,
H.
Okumura
, and
T.
Kouyama
,
J. Mol. Biol.
324
,
469
(
2002
).
24.
S.
Faham
,
D.
Yang
,
E.
Bare
,
S.
Yohannan
,
J. P.
Whitelegge
, and
J. U.
Bowie
,
J. Mol. Biol.
335
,
297
(
2004
).
25.
L.-O.
Essen
,
R.
Siegert
,
W. D.
Lehmann
, and
D.
Oesterhelt
,
Proc. Natl. Acad. Sci. U. S. A.
95
,
11673
(
1998
).
26.
R.
Urano
,
H.
Kokubo
, and
Y.
Okamoto
,
J. Phys. Soc. Jpn.
84
,
084802
(
2015
).
27.
T.
Hirokawa
,
S.
Boon-Chieng
, and
S.
Mitaku
,
Bioinformatics
14
,
378
(
1998
).
28.
A.
Krogh
,
B.
Larsson
,
G.
von Heijne
, and
E.
Sonnhammer
,
J. Mol. Biol.
305
,
567
(
2001
).
29.
D. T.
Jones
,
W. R.
Taylor
, and
J. M.
Thornton
,
Biochemistry
33
,
3038
(
1994
).
30.
G.
Tusnady
and
I.
Simon
,
Bioinformatics
17
,
849
(
2001
).
31.
B. R.
Brooks
,
R. E.
Bruccoleri
,
B. D.
Olafson
,
D. J.
States
,
S.
Swaminathan
, and
M.
Karplus
,
J. Comput. Chem.
4
,
187
(
1983
).
32.
J.
Hu
,
A.
Ma
, and
A. R.
Dinner
,
J. Comput. Chem.
27
,
203
(
2006
).
33.
M.
Lomize
,
A.
Lomize
,
I.
Pogozheva
, and
H.
Mosberg
,
Bioinformatics
22
,
623
(
2006
).
34.
W.
Reiher
, “
Theoretical studies of hydrogen bonding
,” Ph.D. thesis,
Harvard University
,
1985
.
35.
E.
Neria
,
S.
Fischer
, and
M.
Karplus
,
J. Chem. Phys.
105
,
1902
(
1996
).
37.
N.
and
H. A.
Scheraga
,
Macromolecules
3
,
178
(
1970
).
38.
L.
Dodd
,
T.
Boone
, and
D.
Theodorou
,
Mol. Phys.
78
,
961
(
1993
).
39.
M.
Teeter
and
D.
Case
,
J. Phys. Chem.
94
,
8091
(
1990
).
40.
A.
Kitao
,
F.
Hirata
, and
N.
,
Chem. Phys.
158
,
447
(
1991
).
42.
R.
Abagyan
and
P.
Argos
,
J. Mol. Biol.
225
,
519
(
1992
).
43.
A.
Amadei
,
A.
Linssen
, and
H.
Berendsen
,
Proteins
17
,
412
(
1993
).
44.
A.
Kitao
and
N.
,
Curr. Opin. Struct. Biol.
9
,
164
(
1999
).
45.
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
,
J. Mol. Graphics
14
,
33
(
1996
).
46.
R.
Ihaka
and
R.
Gentleman
,
J. Comput. Graph. Stat.
5
,
299
(
1996
).
47.
J.
MacQueen
, in
Fifth Berkeley Symposium on Mathematical Statistics and Probability
, edited by
L. M.
Le Cam
and
J.
Neyman
(
University of California Press
,
Berkeley, CA
,
1967
), pp.
281
297
.
48.
H.
Sugeta
and
T.
Miyazawa
,
Biopolymers
5
,
673
(
1967
).
49.
C. M.
Shakarji
 et al.,
J. Res. Natl. Inst. Stand. Technol.
103
,
633
(
1998
).
50.
P.
Kumar
and
M.
Bansal
,
J. Biomol. Struct. Dyn.
30
,
773
(
2012
).
51.
J. L.
Popot
,
S. E.
Gerchman
, and
D. M.
Engelman
,
J. Mol. Biol.
198
,
655
(
1987
).
52.
D. M.
Engelman
,
Y.
Chen
,
C.-N.
Chin
,
A. R.
Curran
,
A. M.
Dixon
,
A. D.
Dupuy
,
A. S.
Lee
,
U.
Lehnert
,
E. E.
Matthews
,
Y.
Reshetnyak
,
A.
Senes
, and
J.-L.
Popot
,
FEBS Lett.
555
,
122
(
2003
).
53.
L.
Dominguez
,
S. C.
Meredith
,
J. E.
Straub
, and
D.
Thirumalai
,
J. Am. Chem. Soc.
136
,
854
(
2014
).
You do not currently have access to this content.