In spite of lots of attempts, polymer dynamics under fast flow still remains unrevealed. One of the unsolved issues is the insensitivity of end-to-end relaxation of entangled polymers to shear reported by Watanabe et al. [Macromolecules 35, 8802 (2002)] and recently re-examined by Horio et al. [Macromolecules 47, 246 (2014)]. In this study, the effects of degree of freedom below entanglement segment were investigated on the polymer dynamics by the modified multi-chain slip-spring model. The model was validated through the consistency with earlier simulations and experiments for the shear rate dependence of viscosity, end-to-end dimension projected in the shear gradient direction, entanglement density, and anisotropic diffusion tensor. However, the end-to-end relaxation is accelerated under fast shear to follow the earlier multi-chain slip-link model and modified tube model simulations. The results are insensitive to the number of beads between entanglements, supporting the validity of further coarse-grained models. Nevertheless, the flow insensitivity of end-to-end relaxation of entangled linear chains has remained unsolved.

1.
Y.
Masubuchi
,
Annu. Rev. Chem. Biomol. Eng.
5
,
11
(
2014
).
2.
H.
Watanabe
,
S.
Ishida
, and
Y.
Matsumiya
,
Macromolecules
35
,
8802
(
2002
).
3.
H.
Watanabe
,
Prog. Polym. Sci.
24
,
1253
(
1999
).
4.
G.
Marrucci
,
J. Non-Newtonian Fluid Mech.
62
,
279
(
1996
).
5.
M.
Doi
and
S. F.
Edwards
,
J. Chem. Soc., Faraday Trans. 2
74
,
1802
(
1978
).
6.
D. W.
Mead
,
R. G.
Larson
, and
M.
Doi
,
Macromolecules
31
,
7895
(
1998
).
7.
G.
Ianniruberto
and
G.
Marrucci
,
J. Non-Newtonian Fluid Mech.
65
,
241
(
1996
).
8.
T.
Uneyama
,
Y.
Masubuchi
,
K.
Horio
,
Y.
Matsumiya
,
H.
Watanabe
,
J. A.
Pathak
, and
C. M.
Roland
,
J. Polym. Sci., Part B: Polym. Phys.
47
,
1039
(
2009
).
9.
K.
Horio
,
T.
Uneyama
,
Y.
Matsumiya
,
Y.
Masubuchi
, and
H.
Watanabe
,
Macromolecules
47
,
246
(
2014
).
10.
Y.
Masubuchi
,
H.
Watanabe
,
G.
Ianniruberto
,
F.
Greco
, and
G.
Marrucci
,
Nihon Reoroji Gakkaishi
32
,
197
(
2004
).
11.
R. S.
Graham
,
A. E.
Likhtman
,
T. C. B.
McLeish
, and
S. T.
Milner
,
J. Rheol.
47
,
1171
(
2003
).
12.
T.
Uneyama
,
K.
Horio
, and
H.
Watanabe
,
Phys. Rev. E
83
,
061802
(
2011
).
13.
H.
Watanabe
,
S.
Ishida
,
Y.
Matsumiya
, and
T.
Inoue
,
Macromolecules
37
,
6619
(
2004
).
14.
C.
Baig
,
V. G.
Mavrantzas
, and
M.
Kröger
,
Macromolecules
43
,
6886
(
2010
).
15.
J.
Takimoto
,
S. K.
Sukumaran
,
K.
Mori
, and
A.
Fukuhara
, in
Proceedings of the 31st International Conference of the Polymer Processing Society
(
2015
), p.
685
.
16.
K.
Kremer
and
G. S.
Grest
,
J. Chem. Phys.
92
,
5057
(
1990
).
17.
T.
Uneyama
and
Y.
Masubuchi
,
J. Chem. Phys.
137
,
154902
(
2012
).
18.
J.
Schieber
,
J. Chem. Phys.
118
,
5162
(
2003
).
19.
A.
Likhtman
,
Macromolecules
38
,
6128
(
2005
).
20.
M.
Langeloth
,
Y.
Masubuchi
,
M. C.
Böhm
, and
F.
Müller-Plathe
,
J. Chem. Phys.
138
,
104907
(
2013
).
21.
A.
Ramírez-Hernández
,
M.
Müller
, and
J.
de Pablo
,
Soft Matter
9
,
2030
(
2013
).
22.
J. D.
Schieber
,
J.
Neergaard
, and
S.
Gupta
,
J. Rheol.
47
,
213
(
2003
).
23.
Y.
Masubuchi
,
G.
Ianniruberto
,
F.
Greco
, and
G.
Marrucci
,
Modell. Simul. Mater. Sci. Eng.
12
,
S91
(
2004
).
24.
V.
Chappa
,
D.
Morse
,
A.
Zippelius
, and
M.
Müller
,
Phys. Rev. Lett.
109
,
1
(
2012
).
25.
A.
Lees
and
S.
Edwards
,
J. Phys. C: Solid State Phys.
5
,
1921
(
1972
).
26.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Oxford University Press
,
1987
).
27.
M.
Kröger
,
Comput. Phys. Commun.
168
,
209
(
2005
).
28.
T. A.
Hunt
and
B. D.
Todd
,
J. Chem. Phys.
131
,
054904
(
2009
).
29.
P. G.
De Gennes
,
Macromolecules
9
,
594
(
1976
).
30.
E.
van Ruymbeke
,
V.
Shchetnikava
,
Y.
Matsumiya
, and
H.
Watanabe
,
Macromolecules
47
,
7653
(
2014
).
You do not currently have access to this content.