Current efforts to characterize and study interstellar polycyclic aromatic hydrocarbons (PAHs) rely heavily on theoretically predicted infrared (IR) spectra. Generally, such studies use the scaled harmonic frequencies for band positions and double harmonic approximation for intensities of species, and then compare these calculated spectra with experimental spectra obtained under matrix isolation conditions. High-resolution gas-phase experimental spectroscopic studies have recently revealed that the double harmonic approximation is not sufficient for reliable spectra prediction. In this paper, we present the anharmonic theoretical spectra of three PAHs: naphthalene, anthracene, and tetracene, computed with a locally modified version of the SPECTRO program using Cartesian derivatives transformed from Gaussian 09 normal coordinate force constants. Proper treatments of Fermi resonances lead to an impressive improvement on the agreement between the observed and theoretical spectra, especially in the C–H stretching region. All major IR absorption features in the full-scale matrix-isolated spectra, the high-temperature gas-phase spectra, and the most recent high-resolution gas-phase spectra obtained under supersonically cooled molecular beam conditions in the CH-stretching region are assigned.

1.
H.
Lai
,
M.
Lin
,
M.
Yang
, and
A.
Li
,
Mater. Sci. Eng.: C
16
,
23
(
2001
).
2.
J.
Berashevich
and
T.
Chakraborty
,
J. Phys. Chem. C
115
,
24666
(
2011
).
3.
X.
Wan
,
K.
Chen
,
D.
Liu
,
J.
Chen
,
Q.
Miao
, and
J.
Xu
,
Chem. Mater.
24
,
3906
(
2012
).
4.
IARC
,
Monogr. Eval. Carcinog. Risks Hum.
100
,
111
(
2012
).
5.
H.
Richter
and
J.
Howard
,
Prog. Energy Combust. Sci.
26
,
565
(
2000
).
6.
A. M.
Mastral
and
M. S.
Callãn
,
Environ. Sci. Technol.
34
,
3051
(
2000
).
7.
A.
Leger
and
J. L.
Puget
,
Astron. Astrophys.
137
,
L5
(
1984
).
8.
L. J.
Allamandola
,
A. G. G. M.
Tielens
, and
J. R.
Barker
,
Astrophys. J., Lett.
290
,
L25
(
1985
).
9.
A. G. G. M.
Tielens
,
Annu. Rev. Astron. Astrophys.
46
,
289
(
2008
).
10.
D. M.
Hudgins
,
S. A.
Sandford
, and
L. J.
Allamandola
, “
Infrared spectroscopy of matrix isolated PAHs
,” in
The First Symposium on the Infrared Cirrus and Diffuse Interstellar Clouds
, edited by
R. M.
Cutri
and
W. B.
Latter
,
Astronomical Society of the Pacific Conference Series
Vol.
58
(
Astronomical Society of the Pacific
,
San Francisco, CA
,
1994
), p.
283
.
11.
D. M.
Hudgins
and
S. A.
Sandford
,
J. Phys. Chem. A
102
,
329
(
1998
).
12.
See supplementary material at http://dx.doi.org/10.1063/1.4936779 for the full theoretical line list and corresponding polyads of each of the three PAHs.
13.
D. M.
Hudgins
and
L. J.
Allamandola
,
J. Phys. Chem. A
101
,
3472
(
1997
).
14.
D. M.
Hudgins
and
S. A.
Sandford
,
J. Phys. Chem. A
102
,
344
(
1998
).
15.
A. L.
Mattioda
,
C. W.
Bauschlicher
,
J. D.
Bregman
,
D. M.
Hudgins
,
L. J.
Allamandola
, and
A.
Ricca
,
Spectrochim. Acta, Part A
130
,
639
(
2014
).
16.
NIST Mass Spec Data Center,
S. E.
Stein, director
, “
Infrared Spectra
,” in
NIST Chemistry WebBook
,
NIST Standard Reference Database Number 69
, edited by
P. J.
Linstrom
and
W. G.
Mallard
(
National Institute of Standards and Technology
,
Gaithersburg, MD
,
2015
).
17.
E.
Cané
,
A.
Miani
,
P.
Palmieri
,
R.
Tarroni
, and
A.
Trombetti
,
Spectrochim. Acta, Part A
53
,
1839
(
1997
).
18.
E.
Cané
,
A.
Miani
,
P.
Palmieri
,
R.
Tarroni
, and
A.
Trombetti
,
J. Chem. Phys.
106
,
9004
(
1997
).
19.
C.
Joblin
,
L.
D’Hendecourt
,
A.
Leger
, and
D.
Defourneau
,
Astronaut. Aeronaut.
281
,
923
(
1994
).
20.
O.
Pirali
,
M.
Vervloet
,
G.
Mulas
,
G.
Malloci
, and
C.
Joblin
,
Phys. Chem. Chem. Phys.
11
,
3443
(
2009
).
21.
C.
Boersma
,
C. W.
Bauschlicher
, Jr.
,
A.
Ricca
,
A. L.
Mattioda
,
J.
Cami
,
E.
Peeters
,
F.
Sánchez de Armas
,
G.
Puerta Saborido
,
D. M.
Hudgins
, and
L. J.
Allamandola
,
Astrophys. J.
211
,
8
(
2014
).
22.
G.
Malloci
,
C.
Joblin
, and
G.
Mulas
,
Chem. Phys.
332
,
353
(
2007
).
23.
S. R.
Langhoff
,
J. Phys. Chem.
100
,
2819
(
1996
).
24.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
B.
Mennucci
,
G. A.
Petersson
,
H.
Nakatsuji
,
M.
Caricato
,
X.
Li
,
H. P.
Hratchian
,
A. F.
Izmaylov
,
J.
Bloino
,
G.
Zheng
,
J. L.
Sonnenberg
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
J. A.
Montgomery
, Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M.
Bearpark
,
J. J.
Heyd
,
E.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
N.
Rega
,
J. M.
Millam
,
M.
Klene
,
J. E.
Knox
,
J. B.
Cross
,
V.
Bakken
,
C.
Adamo
,
J.
Jaramillo
,
R.
Gomperts
,
R. E.
Stratmann
,
O.
Yazyev
,
A. J.
Austin
,
R.
Cammi
,
C.
Pomelli
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
V. G.
Zakrzewski
,
G. A.
Voth
,
P.
Salvador
,
J. J.
Dannenberg
,
S.
Dapprich
,
A. D.
Daniels
,
Ö.
Farkas
,
J. B.
Foresman
,
J. V.
Ortiz
,
J.
Cioslowski
, and
D. J.
Fox
, gaussian 09, Revision D.01, Gaussian Inc., Wallingford, CT, 2009.
25.
V.
Barone
,
J. Chem. Phys.
122
,
014108
(
2005
).
26.
E.
Maltseva
,
A.
Petrignani
,
A.
Candian
,
C. J.
Mackie
,
X.
Huang
,
T. J.
Lee
,
A. G. G. M.
Tielens
,
J.
Oomens
, and
W. J.
Buma
,
Astrophys. J.
814
,
23
(
2015
).
27.
E. B.
Wilson
,
J. C.
Decius
, and
P. C.
Cross
,
Molecular Vibrations
(
McGraw-Hill
,
1955
), Vol.
305
, p.
616
.
28.
A. G.
Csaszar
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
273
(
2012
).
29.
R.
Burcl
,
N. C.
Handy
, and
S.
Carter
,
Spectrochim. Acta, Part A
59
,
1881
(
2003
).
30.
J. M.
Martin
,
T. J.
Lee
,
P. R.
Taylor
, and
J.-P.
François
,
J. Chem. Phys.
103
,
2589
(
1995
).
31.
32.
K.
Yagi
,
S.
Hirata
, and
K.
Hirao
,
Phys. Chem. Chem. Phys.
10
(
13
),
1781
(
2008
).
33.
K.
Yagi
and
H.
Otaki
,
J. Chem. Phys.
140
,
084113
(
2014
).
34.
J.
Bloino
and
V.
Barone
,
J. Chem. Phys.
136
(
2012
).
35.
A.
Willets
,
N. C.
Handy
,
W. H.
Green
, Jr.
, and
D.
Jayatilaka
,
J. Chem. Phys.
94
,
5608
(
1990
).
36.
J.
Vázquez
and
J. F.
Stanton
,
Mol. Phys.
105
,
101
(
2007
).
37.
J. F.
Gaw
,
A.
Willets
,
W. H.
Green
, and
N. C.
Handy
, SPECTRO, version 3.0 (1996).
38.
F. A.
Hamprecht
,
A. J.
Cohen
,
D. J.
Tozer
, and
N. C.
Handy
,
J. Chem. Phys.
109
,
6264
(
1998
).
39.
T.
Dunning
 et al.,
J. Chem. Phys.
55
,
716
(
1971
).
40.
E.
Cané
,
A.
Miani
, and
A.
Trombetti
,
J. Phys. Chem. A
111
,
8218
(
2007
).
41.
A. D.
Boese
and
J. M. L.
Martin
,
J. Phys. Chem. A
108
,
3085
(
2004
).
42.
V.
Barone
,
M.
Biczysko
, and
J.
Bloino
,
Phys. Chem. Chem. Phys.
16
,
1759
(
2014
).
43.
C. J.
Mackie
,
A.
Candian
,
X.
Huang
,
T. J.
Lee
, and
A. G. G. M.
Tielens
,
J. Chem. Phys.
142
,
244107
(
2015
).
44.
S.
Smolarek
,
A.
Vdovin
,
A.
Rijs
,
C. A.
van Walree
,
M. Z.
Zgierski
, and
W. J.
Buma
,
J. Phys. Chem. A
115
,
9399
(
2011
).
45.
C. W.
Young
,
R. B.
DuVall
, and
N.
Wright
,
Anal. Chem.
23
,
709
(
1951
).
46.
G.
Socrates
,
Infrared and Raman Characteristic Group Frequencies: Tables and Charts
(
John Wiley & Sons
,
2004
).
47.
C.
Boersma
,
A. L.
Mattioda
,
C. W.
Bauschlicher
, Jr.
,
E.
Peeters
,
A. G. G. M.
Tielens
, and
L. J.
Allamandola
,
Astrophys. J.
690
,
1208
(
2009
).
48.
L. J.
Allamandola
,
A. G. G. M.
Tielens
, and
J. R.
Barker
,
Astrophys. J.
71
,
733
(
1989
).
49.
C.
Pech
,
C.
Joblin
, and
P.
Boissel
,
Astronaut. Aeronaut.
388
,
639
(
2002
).
50.
J. R.
Barker
,
L. J.
Allamandola
, and
A. G. G. M.
Tielens
,
Astrophys. J., Lett.
315
,
L61
(
1987
).

Supplementary Material

You do not currently have access to this content.