We introduce an intramolecular energy decomposition scheme for analyzing non-covalent interactions within molecules in the spirit of symmetry-adapted perturbation theory (SAPT). The proposed intra-SAPT approach is based upon the Chemical Hamiltonian of Mayer [Int. J. Quantum Chem. 23(2), 341–363 (1983)] and the recently introduced zeroth-order wavefunction [J. F. Gonthier and C. Corminboeuf, J. Chem. Phys. 140(15), 154107 (2014)]. The scheme decomposes the interaction energy between weakly bound fragments located within the same molecule into physically meaningful components, i.e., electrostatic-exchange, induction, and dispersion. Here, we discuss the key steps of the approach and demonstrate that a single-determinant wavefunction can already deliver a detailed and insightful description of a wide range of intramolecular non-covalent phenomena such as hydrogen bonds, dihydrogen contacts, and ππ stacking interactions. Intra-SAPT is also used to shed the light on competing intra- and intermolecular interactions.

1.
G. A.
Jeffrey
,
An Introduction to Hydrogen Bonding
(
Oxford University Press
,
New York
,
1997
), Vol.
12
.
2.
P.
Metrangolo
,
F.
Meyer
,
T.
Pilati
,
G.
Resnati
, and
G.
Terraneo
,
Angew. Chem., Int. Ed.
47
(
33
),
6114
6127
(
2008
).
3.
M.
Hagemann
,
R. J.
Berger
,
S. A.
Hayes
,
H.-G.
Stammler
, and
N.
Mitzel
,
Chem. Eur. J.
14
(
35
),
11027
11038
(
2008
).
4.
W.
Scherer
,
P.
Sirsch
,
D.
Shorokhov
,
M.
Tafipolsky
,
G. S.
McGrady
, and
E.
Gullo
,
Chem. Eur. J.
9
(
24
),
6057
6070
(
2003
).
5.
D. A.
Dougherty
and
D. A.
Stauffer
,
Science
250
(
4987
),
1558
1560
(
1990
).
6.
H.-J.
Schneider
,
Angew. Chem., Int. Ed.
48
(
22
),
3924
3977
(
2009
).
7.
S.
Scheiner
,
Noncovalent Forces
(
Cham Springer International Publishing
,
2015
).
8.
M.
Raynal
,
P.
Ballester
,
A.
Vidal-Ferran
, and
P. W.
van Leeuwen
,
Chem. Soc. Rev.
43
(
5
),
1660
1733
(
2014
).
9.
C. L.
McMullin
,
J.
Jover
,
J. N.
Harvey
, and
N.
Fey
,
Dalton Trans.
39
(
45
),
10833
10836
(
2010
).
10.
C. L.
McMullin
,
N.
Fey
, and
J. N.
Harvey
,
Dalton Trans.
43
(
36
),
13545
13556
(
2014
).
11.
S.
Ehrlich
,
H. F.
Bettinger
, and
S.
Grimme
,
Angew. Chem., Int. Ed.
52
(
41
),
10892
10895
(
2013
).
12.
H. A.
Scheraga
, in
The Proteins Composition, Structure, and Function
(
Elsevier
,
2012
), Vol.
1
, p.
477
.
13.
A.
Brillante
,
I.
Bilotti
,
R. G.
Della Valle
,
E.
Venuti
, and
A.
Girlando
,
CrystEngComm
10
(
8
),
937
946
(
2008
).
14.
L.
Ferella
,
A.
Rosato
,
P.
Turano
, and
J.
Plavec
,
What Can be Learned About the Structure and Dynamics of Biomolecules from NMR
(
Wiley Online Library
,
2012
).
15.
S.
Lin
,
J.-L.
Chen
,
L.-S.
Huang
, and
H.-W.
Lin
,
Curr. Proteomics
2
(
1
),
55
81
(
2005
).
16.
P.
Munshi
and
T. N.
Guru Row
,
J. Phys. Chem. A
109
(
4
),
659
672
(
2005
).
17.
A. M.
van Oijen
,
Curr. Opin. Biotechnol.
22
(
1
),
75
80
(
2011
).
18.
E. R.
Johnson
,
S.
Keinan
,
P.
Mori-Sanchez
,
J.
Contreras-Garcia
,
A. J.
Cohen
, and
W.
Yang
,
J. Am. Chem. Soc.
132
(
18
),
6498
6506
(
2010
).
19.
P.
De Silva
and
C.
Corminboeuf
,
J. Chem. Theory Comput.
10
(
9
),
3745
3756
(
2014
).
20.
R. F.
Bader
,
Chem. Rev.
91
(
5
),
893
928
(
1991
).
21.
K.
Kitaura
and
K.
Morokuma
,
Int. J. Quantum Chem.
10
(
2
),
325
340
(
1976
).
22.
M.
Schuetz
,
G.
Rauhut
, and
H.-J.
Werner
,
J. Phys. Chem. A
102
(
29
),
5997
6003
(
1998
).
23.
P. N.
Day
,
J. H.
Jensen
,
M. S.
Gordon
,
S. P.
Webb
,
W. J.
Stevens
,
M.
Krauss
,
D.
Garmer
,
H.
Basch
, and
D.
Cohen
,
J. Chem. Phys.
105
(
5
),
1968
1986
(
1996
).
24.
M. A.
Addicoat
and
M. A.
Collins
,
J. Chem. Phys.
131
(
10
),
104103
(
2009
).
25.
Y.
Mochizuki
,
K.
Fukuzawa
,
A.
Kato
,
S.
Tanaka
,
K.
Kitaura
, and
T.
Nakano
,
Chem. Phys. Lett.
410
(
4-6
),
247
253
(
2005
).
26.
Y.
Mo
,
J.
Gao
, and
S. D.
Peyerimhoff
,
J. Chem. Phys.
112
(
13
),
5530
5538
(
2000
).
27.
R. Z.
Khaliullin
,
M.
Head-Gordon
, and
A. T.
Bell
,
J. Chem. Phys.
124
(
20
),
204105
(
2006
).
28.
B.
Jeziorski
,
R.
Moszynski
, and
K.
Szalewicz
,
Chem. Rev.
94
(
7
),
1887
1930
(
1994
).
29.
E. G.
Hohenstein
and
C. D.
Sherrill
,
J. Chem. Phys.
133
(
10
),
104107
(
2010
).
30.
E. G.
Hohenstein
,
H. M.
Jaeger
,
E. J.
Carrell
,
G. S.
Tschumper
, and
C. D.
Sherrill
,
J. Chem. Theory Comput.
7
(
9
),
2842
2851
(
2011
).
31.
E. G.
Hohenstein
,
R. M.
Parrish
,
C. D.
Sherrill
,
J. M.
Turney
, and
H. F.
Schaefer
III
,
J. Chem. Phys.
135
(
17
),
174107
(
2011
).
32.
H.
Dodziuk
,
T.
Korona
,
E.
Lomba
, and
C.
Bores
,
J. Chem. Theory Comput.
8
(
11
),
4546
4555
(
2012
).
33.
R. M.
Parrish
and
C. D.
Sherrill
,
J. Chem. Phys.
141
(
4
),
044115
(
2014
).
34.
R. M.
Parrish
,
T. M.
Parker
, and
C. D.
Sherrill
,
J. Chem. Theory Comput.
10
(
10
),
4417
4431
(
2014
).
35.
J. F.
Gonthier
and
C.
Corminboeuf
,
J. Chem. Phys.
140
(
15
),
154107
(
2014
).
36.
R. M.
Parrish
,
J. F.
Gonthier
,
C.
Corminbœuf
, and
C. D.
Sherrill
,
J. Chem. Phys.
143
(
5
),
051103
(
2015
).
37.
P.
Su
,
Z.
Chen
, and
W.
Wu
,
Chem. Phys. Lett.
635
,
250
256
(
2015
).
38.
P.
Hobza
,
R.
Zahradník
, and
K.
Müller-Dethlefs
,
Collect. Czech. Chem. Commun.
71
(
4
),
443
531
(
2006
).
39.
J.
Černỳ
and
P.
Hobza
,
Phys. Chem. Chem. Phys.
9
(
39
),
5291
5303
(
2007
).
40.
J. P.
Wagner
and
P. R.
Schreiner
,
Angew. Chem., Int. Ed.
54
(
42
),
12274
12296
(
2015
).
41.
I.
Mayer
,
Int. J. Quantum Chem.
23
(
2
),
341
363
(
1983
).
42.
P. R.
Surján
,
I.
Mayer
, and
I.
Lukovits
,
Chem. Phys. Lett.
119
(
6
),
538
542
(
1985
).
44.
I.
Mayer
and
A.
Vibok
,
Mol. Phys.
92
(
3
),
503
510
(
1997
).
45.
H.
Stoll
,
G.
Wagenblast
, and
H.
Preuß
,
Theor. Chem. Acc.
57
(
2
),
169
178
(
1980
).
46.
G. F.
Smits
and
C.
Altona
,
Theor. Chem. Acc.
67
(
6
),
461
475
(
1985
).
47.
E.
Gianinetti
,
M.
Raimondi
, and
E.
Tornaghi
,
Int. J. Quantum Chem.
60
(
1
),
157
166
(
1996
).
48.
Y.
Mo
and
S. D.
Peyerimhoff
,
J. Chem. Phys.
109
(
5
),
1687
1697
(
1998
).
49.
M.
Sironi
and
A.
Famulari
,
Theor. Chem. Acc.
103
(
5
),
417
422
(
2000
).
50.
T.
Nagata
,
O.
Takahashi
,
K.
Saito
, and
S.
Iwata
,
J. Chem. Phys.
115
(
8
),
3553
3560
(
2001
).
51.
I. G.
Kaplan
,
Theory of Molecular Interactions
(
Elsevier Science Ltd.
,
1986
).
52.
S.
Wilson
,
Electron Correlation in Molecules
(
Courier Corporation
,
2014
).
53.
Á.
Vibók
and
I.
Mayer
,
Acta Phys. Hung.
68
(
3-4
),
241
251
(
1990
).
54.
P. M.
Gill
and
L.
Radom
,
Chem. Phys. Lett.
132
(
1
),
16
22
(
1986
).
55.
G. J.
Beran
,
S. R.
Gwaltney
, and
M.
Head-Gordon
,
Phys. Chem. Chem. Phys.
5
(
12
),
2488
2493
(
2003
).
56.
P.
Su
and
H.
Li
,
J. Chem. Phys.
131
(
1
),
014102
(
2009
).
57.
R. J.
Azar
,
P. R.
Horn
,
E. J.
Sundstrom
, and
M.
Head-Gordon
,
J. Chem. Phys.
138
(
8
),
084102
(
2013
).
58.
I.
Mayer
,
Chem. Phys. Lett.
332
(
3
),
381
388
(
2000
).
59.
S. N.
Steinmann
,
C.
Corminboeuf
,
W.
Wu
, and
Y.
Mo
,
J. Phys. Chem. A
115
(
21
),
5467
5477
(
2011
).
60.
H.-J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
,
M.
Schütz
 et al., molpro, version 2010.1, a package ofab initio programs, 2010, see http://www.molpro.net.
61.
See supplementary material at http://dx.doi.org/10.1063/1.4936830 for results of intra-SAPT computations for rare gas dimer systems.
62.
W. J.
Hehre
,
R.
Ditchfield
, and
J. A.
Pople
,
J. Chem. Phys.
56
(
5
),
2257
2261
(
1972
).
63.
S.
Brassell
,
G.
Eglinton
,
J.
Maxwell
, and
R.
Philp
,
Aquatic Pollutants: Transformation and Biological Effects
(
Elsevier
,
1978
), pp.
69
86
.
64.
R.
Eichmann
,
P.
Neuling
,
G.
Ketseridis
,
J.
Hahn
,
R.
Jaenicke
, and
C.
Junge
,
Atmos. Environ. (1967)
13
(
5
),
587
599
(
1979
).
65.
N. O. B.
Lúttschwager
,
T. N.
Wassermann
,
R. A.
Mata
, and
M. A.
Suhm
,
Angew. Chem., Int. Ed.
52
(
1
),
463
466
(
2013
).
66.
J. N.
Byrd
,
R. J.
Bartlett
, and
J. A.
Montgomery
, Jr.
,
J. Phys. Chem. A
118
(
9
),
1706
1712
(
2014
).
67.
D. G.
Liakos
and
F.
Neese
,
J. Chem. Theory Comput.
11
(
5
),
2137
2143
(
2015
).
68.
J.
Echeverría
,
G.
Aullón
,
D.
Danovich
,
S.
Shaik
, and
S.
Alvarez
,
Nat. Chem.
3
(
4
),
323
330
(
2011
).
69.
J. P.
Wagner
and
P. R.
Schreiner
,
J. Chem. Theory Comput.
10
(
3
),
1353
1358
(
2014
).
70.
P. C.
Hariharan
and
J. A.
Pople
,
Theor. Chem. Acc.
28
(
3
),
213
222
(
1973
).
71.
F.
Weigend
and
R.
Ahlrichs
,
Phys. Chem. Chem. Phys.
7
(
18
),
3297
3305
(
2005
).
72.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
90
(
2
),
1007
1023
(
1989
).
73.
W.
Wu
,
Y.
Liu
, and
D.
Zhu
,
Chem. Soc. Rev.
39
,
1489
1502
(
2010
).
74.
R.
Podeszwa
,
R.
Bukowski
, and
K.
Szalewicz
,
J. Phys. Chem. A
110
(
34
),
10345
10354
(
2006
).
75.
M. O.
Sinnokrot
and
C. D.
Sherrill
,
J. Phys. Chem. A
107
(
41
),
8377
8379
(
2003
).
76.
M. O.
Sinnokrot
and
C. D.
Sherrill
,
J. Am. Chem. Soc.
126
(
24
),
7690
7697
(
2004
).
77.
S.-M.
Hsu
,
Y.-C.
Lin
,
J.-W.
Chang
,
Y.-H.
Liu
, and
H.-C.
Lin
,
Angew. Chem., Int. Ed.
53
(
7
),
1921
1927
(
2014
).
78.
S.
Tsuzuki
,
T.
Uchimaru
, and
M.
Mikami
,
J. Phys. Chem. A
110
(
5
),
2027
2033
(
2006
).
79.
S. E.
Wheeler
and
K.
Houk
,
J. Am. Chem. Soc.
130
(
33
),
10854
10855
(
2008
).
80.
H.
Umeyama
and
K.
Morokuma
,
J. Am. Chem. Soc.
99
(
5
),
1316
1332
(
1977
).
81.
J. F.
Beck
and
Y.
Mo
,
J. Comput. Chem.
28
(
1
),
455
466
(
2007
).
82.
J.
Hoja
,
A. F.
Sax
, and
K.
Szalewicz
,
Chem. Eur. J.
20
(
8
),
2292
2300
(
2014
).
83.
M.
Jablonski
,
A.
Kaczmarek
, and
A. J.
Sadlej
,
J. Phys. Chem. A
110
(
37
),
10890
10898
(
2006
).
84.
J. R.
Lane
,
J.
Contreras-García
,
J.-P.
Piquemal
,
B. J.
Miller
, and
H. G.
Kjaergaard
,
J. Chem. Theory Comput.
9
(
8
),
3263
3266
(
2013
).
85.
S.
Tsuzuki
and
H. P.
Luthi
,
J. Chem. Phys.
114
(
9
),
3949
3957
(
2001
).
86.
Y.
Kharitonov
,
E.
Khoshabova
, and
M.
Rodnikova
,
Bull. Acad. Sci. USSR, Div. Chem. Sci. (Engl. Transl.)
39
(
6
),
1190
1199
(
1990
).
87.
D. L.
Thomsen
,
J. L.
Axson
,
S. D.
Schrøder
,
J. R.
Lane
,
V.
Vaida
, and
H. G.
Kjaergaard
,
J. Phys. Chem. A
117
(
40
),
10260
10273
(
2013
).
88.
S. J.
Grabowski
,
Annu. Rep. Prog. Chem., Sect. C: Phys. Chem.
102
,
131
165
(
2006
).
89.
D. L.
Cooper
and
P. B.
Karadakov
,
Int. Rev. Phys. Chem.
28
(
2
),
169
206
(
2009
).
90.
C. M.
Hadad
,
P. R.
Rablen
, and
K. B.
Wiberg
,
J. Org. Chem.
63
(
24
),
8668
8681
(
1998
).
91.
R. Z.
Khaliullin
,
A. T.
Bell
, and
M.
Head-Gordon
,
Chem. Eur. J.
15
(
4
),
851
855
(
2009
).

Supplementary Material

You do not currently have access to this content.