We present a solution of the full time-dependent density-functional theory (TDDFT) eigenvalue equation in the linear response formalism exhibiting a linear-scaling computational complexity with system size, without relying on the simplifying Tamm-Dancoff approximation (TDA). The implementation relies on representing the occupied and unoccupied subspaces with two different sets of in situ optimised localised functions, yielding a very compact and efficient representation of the transition density matrix of the excitation with the accuracy associated with a systematic basis set. The TDDFT eigenvalue equation is solved using a preconditioned conjugate gradient algorithm that is very memory-efficient. The algorithm is validated on a small test molecule and a good agreement with results obtained from standard quantum chemistry packages is found, with the preconditioner yielding a significant improvement in convergence rates. The method developed in this work is then used to reproduce experimental results of the absorption spectrum of bacteriochlorophyll in an organic solvent, where it is demonstrated that the TDA fails to reproduce the main features of the low energy spectrum, while the full TDDFT equation yields results in good qualitative agreement with experimental data. Furthermore, the need for explicitly including parts of the solvent into the TDDFT calculations is highlighted, making the treatment of large system sizes necessary that are well within reach of the capabilities of the algorithm introduced here. Finally, the linear-scaling properties of the algorithm are demonstrated by computing the lowest excitation energy of bacteriochlorophyll in solution. The largest systems considered in this work are of the same order of magnitude as a variety of widely studied pigment-protein complexes, opening up the possibility of studying their properties without having to resort to any semiclassical approximations to parts of the protein environment.

1.
S.
Shim
,
P.
Rebentrost
,
S.
Valleau
, and
A.
Aspuru-Guzik
,
Biophys. J.
102
,
649
-
660
(
2012
).
2.
C.
König
and
J.
Neugebauer
,
J. Chem. Theory Comput.
9
,
1808
-
1820
(
2013
).
3.
D. J.
Cole
,
A. W.
Chin
,
N. D. M.
Hine
,
P. D.
Haynes
, and
M. C.
Payne
,
J. Phys. Chem. Lett.
4
,
4206
(
2013
).
4.
C. M.
Isborn
,
A. W.
Götz
,
M. A.
Clark
,
R. C.
Walker
, and
T. J.
Martínez
,
J. Chem. Theory Comput.
8
,
5092
-
5106
(
2012
).
5.
C.
König
and
J.
Neugebauer
,
ChemPhysChem
13
,
386
-
425
(
2012
).
6.
E.
Runge
and
E. K. U.
Gross
,
Phys. Rev. Lett.
52
,
997
(
1984
).
7.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
B864
-
B871
(
1964
).
8.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
1133
(
1965
).
9.
D.
Rocca
,
R.
Gebauer
,
Y.
Saad
, and
S.
Baroni
,
J. Chem. Phys.
128
,
154105
(
2008
).
10.
H.
Hübener
and
F.
Giustino
,
Phys. Rev. B
89
,
085129
(
2014
).
11.
H.
Hübener
and
F.
Giustino
,
J. Chem. Phys.
141
,
044117
(
2014
).
12.
K.
Yabana
and
G. F.
Bertsch
,
Phys. Rev. B
54
,
4484
(
1996
).
13.
M.
Petersilka
,
U. J.
Grossmann
, and
E. K. U.
Gross
,
Phys. Rev. Lett.
76
,
1212
(
1996
).
14.
M. E.
Casida
, in
Recent Advances in Density Functional Methods
, edited by
D. P.
Chong
(
World Scientific
,
Singapore
,
1995
), Vol.
1
.
15.
G.
Onida
,
L.
Reining
, and
A.
Rubio
,
Rev. Mod. Phys.
74
,
601
(
2002
).
16.
C.
Yam
,
S.
Yokojima
, and
G.
Chen
,
Phys. Rev. B
68
,
153105
(
2003
).
17.
G.
Cui
,
W.
Fang
, and
W.
Yang
,
Phys. Chem. Chem. Phys.
12
,
416
-
421
(
2010
).
18.
C.
O’Rourke
and
D. R.
Bowler
,
J. Chem. Phys.
143
,
102801
(
2015
).
19.
S.
Tretiak
,
C. M.
Isborn
,
A. M. N.
Niklasson
, and
M.
Challacombe
,
J. Chem. Phys.
130
,
054111
(
2009
).
20.
T. J.
Zuehlsdorff
,
N. D. M.
Hine
,
J. S.
Spencer
,
N. M.
Harrison
,
D. J.
Riley
, and
P. D.
Haynes
,
J. Chem. Phys.
139
,
064104
(
2013
).
21.
22.
A. L.
Fetter
and
J. D.
Walecka
,
Quantum Theory of Many-Particle Systems
(
McGraw-Hill
,
New York
,
1971
).
23.
S.
Hirata
and
M.
Head-Gordon
,
Chem. Phys. Lett.
314
,
291
-
299
(
1999
).
24.
P. D.
Haynes
,
C.-K.
Skylaris
,
A. A.
Mostofi
, and
M. C.
Payne
,
J. Chem. Phys.
122
,
084119
(
2005
).
25.
A.
Dreuw
,
J. L.
Weisman
, and
M.
Head-Gordon
,
J. Chem. Phys.
119
,
2943
(
2003
).
26.
J.
Berkowitz
,
Photoabsorption, Photoionization, and Photoelectron Spectroscopy
(
Academic Press
,
New York
,
1979
).
27.
M.
Grüning
,
A.
Marini
, and
X.
Gonze
,
Nano Lett.
9
(
8
),
2820
-
2824
(
2009
).
28.
29.
30.
L. E.
Ratcliff
,
N. D. M.
Hine
, and
P. D.
Haynes
,
Phys. Rev. B
84
,
165131
(
2011
).
31.
J.-H.
Li
,
T. J.
Zuehlsdorff
,
M. C.
Payne
, and
N. D. M.
Hine
,
Phys. Chem. Chem. Phys.
17
,
12065
-
12079
(
2015
).
32.
T. J.
Zuehlsdorff
,
Computing the Optical Properties of Large Systems
(
Springer International Publishing
,
Switzerland
,
2015
).
33.
A. A.
Mostofi
,
C.-K.
Skylaris
,
P. D.
Haynes
, and
M. C.
Payne
,
Comput. Phys. Commun.
147
,
788
(
2002
).
34.
G.
Nenciu
,
Commun. Math. Phys.
91
,
81
(
1983
).
35.
S.
Ismail-Beigi
and
T. A.
Arias
,
Phys. Rev. Lett.
82
,
2127
(
1999
).
36.
R. E.
Stratmann
,
G.
Scuseria
, and
M. J.
Frisch
,
J. Chem. Phys.
109
,
8218
(
1998
).
37.
See supplementary material at http://dx.doi.org/10.1063/1.4936280 for an outline of the conjugate gradient algorithm used in this work.
38.
X.-P.
Li
,
R. W.
Nunes
, and
D.
Vanderbilt
,
Phys. Rev. B
47
,
10891
(
1993
).
39.
C. K.
Gan
,
P. D.
Haynes
, and
M. C.
Payne
,
Comput. Phys. Commun.
134
,
33
-
40
(
2001
).
40.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
41.
N.
Troullier
and
J. L.
Martins
,
Phys. Rev. B
43
,
1993
(
1991
).
42.
N. D. M.
Hine
,
M.
Robinson
,
P. D.
Haynes
,
C.-K.
Skylaris
,
M. C.
Payne
, and
A. A.
Mostofi
,
Phys. Rev. B
83
,
195102
(
2011
).
43.
N. D. M.
Hine
,
J.
Dziedzic
,
P. D.
Haynes
, and
C.-K.
Skylaris
,
J. Chem. Phys.
135
,
204103
(
2011
).
44.
M.
Valiev
,
E. J.
Bylaska
,
N.
Govind
,
K.
Kowalski
,
T. P.
Straatsma
 et al,
Comput. Phys. Commun.
181
,
1477
(
2010
).
45.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
46.
J. S.
Connolly
,
E. B.
Samuel
, and
A. F.
Janzen
,
Photochem. Photobiol.
36
,
565
-
574
(
1982
).
47.
H.
Du
,
R.-C. A.
Fuh
,
J.
Li
,
L. A.
Corkan
, and
J. S.
Lindsey
,
Photochem. Photobiol.
68
,
141
-
142
(
1998
).
48.
J.
Dziedzic
,
H. H.
Helal
,
C.-K.
Skylaris
,
A. A.
Mostofi
, and
M. C.
Payne
,
Europhys. Lett.
95
,
43001
(
2011
).
49.
D. A.
Case
,
J. T.
Berryman
,
R. M.
Betz
,
D. S.
Cerutti
 et al,
AMBER 2015
,
University of California
, San Francisco,
2015
.
50.
W.
Humphrey
,
A.
Dalke
, and
D.
Schulten
,
J. Mol. Graphics
14
,
3338
(
1996
).
51.
K. A.
Wilkinson
,
N. D. M.
Hine
, and
C.-K.
Skylaris
,
J. Chem. Theory Comput.
10
,
4782
(
2014
).
52.

See the discussion in Ref. 20 regarding the question when a truncation of P{1} is strictly justified.

53.

The raw data of the experimental results are taken from http://omlc.org/spectra/PhotochemCAD/html/135.html.

Supplementary Material

You do not currently have access to this content.