The Marcus and Pekar partitions are common, alternative models to describe the non-equilibrium dielectric polarization response that accompanies instantaneous perturbation of a solute embedded in a dielectric continuum. Examples of such a perturbation include vertical electronic excitation and vertical ionization of a solution-phase molecule. Here, we provide a general derivation of the accompanying polarization response, for a quantum-mechanical solute described within the framework of a polarizable continuum model (PCM) of electrostatic solvation. Although the non-equilibrium free energy is formally equivalent within the two partitions, albeit partitioned differently into “fast” versus “slow” polarization contributions, discretization of the PCM integral equations fails to preserve certain symmetries contained in these equations (except in the case of the conductor-like models or when the solute cavity is spherical), leading to alternative, non-equivalent matrix equations. Unlike the total equilibrium solvation energy, however, which can differ dramatically between different formulations, we demonstrate that the equivalence of the Marcus and Pekar partitions for the non-equilibrium solvation correction is preserved to high accuracy. Differences in vertical excitation and ionization energies are <0.2 eV (and often <0.01 eV), even for systems specifically selected to afford a large polarization response. Numerical results therefore support the interchangeability of the Marcus and Pekar partitions, but also caution against relying too much on the fast PCM charges for interpretive value, as these charges differ greatly between the two partitions, especially in polar solvents.

1.
J.
Tomasi
,
B.
Mennucci
, and
R.
Cammi
,
Chem. Rev.
105
,
2999
(
2005
).
2.
A.
Klamt
,
WIREs Comput. Mol. Sci.
1
,
699
(
2011
).
3.
B.
Mennucci
,
WIREs Comput. Mol. Sci.
2
,
386
(
2012
).
4.
J. M.
Herbert
and
A. W.
Lange
, “
Polarizable continuum models for (bio)molecular electrostatics: Basic theory and recent developments for macromolecules and simulations
,” in
Many-Body Effects and Electrostatics in Biomolecules
, edited by
Q.
Cui
,
P.
Ren
, and
M.
Meuwly
(
Pan Stanford
,
2015
), Chap. 1, pp.
1
54
.
5.
A.
Klamt
and
G.
Schüürmann
,
J. Chem. Soc., Perkin Trans. 2
1993
,
799
.
6.
V.
Barone
and
M.
Cossi
,
J. Phys. Chem. A
102
,
1995
(
1998
).
7.
A. W.
Lange
and
J. M.
Herbert
,
Chem. Phys. Lett.
509
,
77
(
2011
).
8.
J.
Tomasi
,
B.
Mennucci
, and
E.
Cancès
,
J. Mol. Struct.: THEOCHEM
464
,
211
(
1999
).
9.
E.
Cancès
and
B.
Mennucci
,
J. Chem. Phys.
114
,
4744
(
2001
).
10.
D. M.
Chipman
,
J. Chem. Phys.
112
,
5558
(
2000
).
11.
D. M.
Chipman
,
Theor. Chem. Acc.
107
,
80
(
2002
).
12.
C. J.
Cramer
and
D. G.
Truhlar
,
Acc. Chem. Res.
41
,
760
(
2008
).
13.
A.
Klamt
,
B.
Mennucci
,
J.
Tomasi
,
V.
Barone
,
C.
Curutchet
,
M.
Orozco
, and
F. J.
Luque
,
Acc. Chem. Res.
42
,
489
(
2009
).
14.
A.
Pomogaeva
and
D. M.
Chipman
,
J. Chem. Theory Comput.
10
,
211
(
2014
).
15.
A.
Pomogaeva
and
D. M.
Chipman
,
J. Phys. Chem. A
119
,
5173
(
2015
).
16.
R.
Cammi
and
B.
Mennucci
,
J. Chem. Phys.
110
,
9877
(
1999
).
17.
M.
Cossi
and
V.
Barone
,
J. Chem. Phys.
115
,
4708
(
2001
).
18.
J.
Tomasi
and
M.
Persico
,
Chem. Rev.
94
,
2027
(
1994
).
19.
R.
Cammi
and
J.
Tomasi
,
Int. J. Quantum Chem., Symp.
29
,
465
(
1995
).
20.
M.
Cossi
and
V.
Barone
,
J. Phys. Chem. A
104
,
10614
(
2000
).
21.
R.
Improta
,
V.
Barone
,
G.
Scalmani
, and
M. J.
Frisch
,
J. Chem. Phys.
125
,
054103
(
2006
).
22.
R.
Cammi
,
Int. J. Quantum Chem.
110
,
3040
(
2010
).
23.
R.
Cammi
,
R.
Fukuda
,
M.
Ehara
, and
H.
Nakatsuji
,
J. Chem. Phys.
133
,
024104
(
2010
).
24.
R.
Fukuda
,
M.
Ehara
,
H.
Nakatsuji
, and
R.
Cammi
,
J. Chem. Phys.
134
,
104109
(
2011
).
25.
M.
Caricato
,
J. Chem. Theory Comput.
8
,
4494
(
2012
).
26.
M.
Caricato
,
J. Chem. Theory Comput.
8
,
5081
(
2012
).
27.
R. A.
Marcus
,
J. Chem. Phys.
24
,
966
(
1956
).
28.
R. A.
Marcus
,
J. Chem. Phys.
24
,
979
(
1956
).
29.
S. I.
Pekar
,
Research in electron theory of crystals, Technical Report No. AEC–tr–5575, U.S. Atomic Energy Commission, Division of Technical Information
,
1963
.
30.
J. E.
Brady
and
P. W.
Carr
,
J. Phys. Chem.
89
,
5759
(
1985
).
31.
A.
Klamt
,
J. Phys. Chem.
100
,
3349
(
1996
).
32.
C. J. F.
Böttcher
and
P.
Bordewijk
,
Theory of Electric Polarization
, 2nd ed. (
Elsevier
,
New York
,
1973
), Vol.
II
.
33.
N. S.
Bayliss
and
R. G.
McRae
,
J. Phys. Chem.
58
,
1006
(
1954
).
34.
See http://www.stenutz.eu/chem/solv23.php for a list of indices of refraction for common solvents.
35.
M.
Cossi
and
V.
Barone
,
J. Chem. Phys.
112
,
2427
(
2000
).
36.
M. A.
Aguilar
,
J. Phys. Chem. A
105
,
10393
(
2001
).
37.
A. V.
Marenich
,
C. J.
Cramer
,
D. G.
Truhlar
,
C. A.
Guido
,
B.
Mennucci
,
G.
Scalmani
, and
M. J.
Frisch
,
Chem. Sci.
2
,
2143
(
2011
).
38.
J.-M.
Mewes
,
Z.-Q.
You
,
M.
Wormit
,
T.
Kriesche
,
J. M.
Herbert
, and
A.
Dreuw
,
J. Phys. Chem. A
119
,
5446
(
2015
).
39.
L. D.
Jacobson
,
C. F.
Williams
, and
J. M.
Herbert
,
J. Chem. Phys.
130
,
124115
(
2009
).
40.
M. A.
Aguilar
,
F. J.
Olivares del Valle
, and
J.
Tomasi
,
J. Chem. Phys.
98
,
7375
(
1993
).
41.
D. M.
Chipman
,
J. Chem. Phys.
131
,
014103
(
2009
).
42.
F.
Lipparini
,
G.
Scalmani
,
B.
Mennucci
,
E.
Cancès
,
M.
Caricato
, and
M. J.
Frisch
,
J. Chem. Phys.
133
,
014106
(
2010
).
43.
A. W.
Lange
and
J. M.
Herbert
,
J. Chem. Phys.
133
,
244111
(
2010
).
44.
L. D.
Jacobson
and
J. M.
Herbert
,
J. Chem. Theory Comput.
7
,
2085
(
2011
).
45.
R.
Cammi
,
S.
Corni
,
B.
Mennucci
, and
J.
Tomasi
,
J. Chem. Phys.
122
,
104513
(
2005
).
46.
S.
Corni
,
R.
Cammi
,
B.
Mennucci
, and
J.
Tomasi
,
J. Chem. Phys.
123
,
134512
(
2005
).
47.
M.
Caricato
,
B.
Mennucci
,
J.
Tomasi
,
F.
Ingrosso
,
R.
Cammi
,
S.
Corni
, and
G.
Scalmani
,
J. Chem. Phys.
124
,
124520
(
2006
).
48.
B.
Lunkenheimer
and
A.
Köhn
,
J. Chem. Theory Comput.
9
,
977
(
2013
).
49.
F.
Furche
and
R.
Ahlrichs
,
J. Chem. Phys.
117
,
7433
(
2002
).
50.
A.
Dreuw
and
M.
Wormit
,
WIREs Comput. Mol. Sci.
5
,
82
(
2015
).
51.
F.
Plasser
,
M.
Wormit
, and
A.
Dreuw
,
J. Chem. Phys.
140
,
024106
(
2014
).
52.
F.
Plasser
,
S. A.
Bäppler
,
M.
Wormit
, and
A.
Dreuw
,
J. Chem. Phys.
141
,
024107
(
2014
).
53.
N.
Ghoneim
and
P.
Suppan
,
Pure Appl. Chem.
65
,
1739
(
1993
).
54.
M.
Hashimoto
and
H.
Hamaguchi
,
J. Phys. Chem.
99
,
7875
(
1995
).
55.
Z. R.
Grabowski
,
K.
Rotkiewicz
, and
W.
Rettig
,
Chem. Rev.
103
,
3899
(
2003
).
56.
D.
Ghosh
,
A.
Roy
,
R.
Seidel
,
B.
Winter
,
S.
Bradforth
, and
A. I.
Krylov
,
J. Phys. Chem. B
116
,
7269
(
2012
).
57.
T. M.
Henderson
,
B. G.
Janesko
, and
G. E.
Scuseria
,
J. Chem. Phys.
128
,
194105
(
2008
).
58.
M. A.
Rohrdanz
,
K. M.
Martins
, and
J. M.
Herbert
,
J. Chem. Phys.
130
,
054112
(
2009
).
59.
R.
Baer
,
E.
Livshits
, and
U.
Salzner
,
Annu. Rev. Phys. Chem.
61
,
85
(
2010
).
60.
T.
Stein
,
L.
Kronik
, and
R.
Baer
,
J. Am. Chem. Soc.
131
,
2818
(
2009
).
61.
T.
Minami
,
M.
Nakano
, and
F.
Castet
,
J. Phys. Chem. Lett.
2
,
1725
(
2011
).
62.
D. M.
Chipman
and
M.
Dupuis
,
Theor. Chem. Acc.
107
,
90
(
2002
).
63.
Y.
Shao
,
Z.
Gan
,
E.
Epifanovsky
,
A. T. B.
Gilbert
,
M.
Wormit
,
J.
Kussmann
,
A. W.
Lange
,
A.
Behn
,
J.
Deng
,
X.
Feng
,
D.
Ghosh
,
M.
Goldey
,
P. R.
Horn
,
L. D.
Jacobson
,
I.
Kaliman
,
R. Z.
Khaliullin
,
T.
Kús
,
A.
Landau
,
J.
Liu
,
E. I.
Proynov
,
Y. M.
Rhee
,
R. M.
Richard
,
M. A.
Rohrdanz
,
R. P.
Steele
,
E. J.
Sundstrom
,
H. L.
Woodcock
III
,
P. M.
Zimmerman
,
D.
Zuev
,
B.
Albrecht
,
E.
Alguire
,
B.
Austin
,
G. J. O.
Beran
,
Y. A.
Bernard
,
E.
Berquist
,
K.
Brandhorst
,
K. B.
Bravaya
,
S. T.
Brown
,
D.
Casanova
,
C.-M.
Chang
,
Y.
Chen
,
S. H.
Chien
,
K. D.
Closser
,
D. L.
Crittenden
,
M.
Diedenhofen
,
R. A.
DiStasio
, Jr.
,
H.
Dop
,
A. D.
Dutoi
,
R. G.
Edgar
,
S.
Fatehi
,
L.
Fusti-Molnar
,
A.
Ghysels
,
A.
Golubeva-Zadorozhnaya
,
J.
Gomes
,
M. W. D.
Hanson-Heine
,
P. H. P.
Harbach
,
A. W.
Hauser
,
E. G.
Hohenstein
,
Z. C.
Holden
,
T.-C.
Jagau
,
H.
Ji
,
B.
Kaduk
,
K.
Khistyaev
,
J.
Kim
,
J.
Kim
,
R. A.
King
,
P.
Klunzinger
,
D.
Kosenkov
,
T.
Kowalczyk
,
C. M.
Krauter
,
K. U.
Lao
,
A.
Laurent
,
K. V.
Lawler
,
S. V.
Levchenko
,
C. Y.
Lin
,
F.
Liu
,
E.
Livshits
,
R. C.
Lochan
,
A.
Luenser
,
P.
Manohar
,
S. F.
Manzer
,
S.-P.
Mao
,
N.
Mardirossian
,
A. V.
Marenich
,
S. A.
Maurer
,
N. J.
Mayhall
,
C. M.
Oana
,
R.
Olivares-Amaya
,
D. P.
O’Neill
,
J. A.
Parkhill
,
T. M.
Perrine
,
R.
Peverati
,
P. A.
Pieniazek
,
A.
Prociuk
,
D. R.
Rehn
,
E.
Rosta
,
N. J.
Russ
,
N.
Sergueev
,
S. M.
Sharada
,
S.
Sharmaa
,
D. W.
Small
,
A.
Sodt
,
T.
Stein
,
D.
Stück
,
Y.-C.
Su
,
A. J. W.
Thom
,
T.
Tsuchimochi
,
L.
Vogt
,
O.
Vydrov
,
T.
Wang
,
M. A.
Watson
,
J.
Wenzel
,
A.
White
,
C. F.
Williams
,
V.
Vanovschi
,
S.
Yeganeh
,
S. R.
Yost
,
Z.-Q.
You
,
I. Y.
Zhang
,
X.
Zhang
,
Y.
Zhou
,
B. R.
Brooks
,
G. K. L.
Chan
,
D. M.
Chipman
,
C. J.
Cramer
,
W. A.
Goddard
III
,
M. S.
Gordon
,
W. J.
Hehre
,
A.
Klamt
,
H. F.
Schaefer
III
,
M. W.
Schmidt
,
C. D.
Sherrill
,
D. G.
Truhlar
,
A.
Warshel
,
X.
Xua
,
A.
Aspuru-Guzik
,
R.
Baer
,
A. T.
Bell
,
N. A.
Besley
,
J.-D.
Chai
,
A.
Dreuw
,
B. D.
Dunietz
,
T. R.
Furlani
,
S. R.
Gwaltney
,
C.-P.
Hsu
,
Y.
Jung
,
J.
Kong
,
D. S.
Lambrecht
,
W.
Liang
,
C.
Ochsenfeld
,
V. A.
Rassolov
,
L. V.
Slipchenko
,
J. E.
Subotnik
,
T.
Van Voorhis
,
J. M.
Herbert
,
A. I.
Krylov
,
P. M. W.
Gill
, and
M.
Head-Gordon
,
Mol. Phys.
113
,
184
(
2015
).
64.
A. W.
Lange
and
J. M.
Herbert
,
J. Phys. Chem. Lett.
1
,
556
(
2010
).
65.
See supplementary material at http://dx.doi.org/10.1063/1.4936357 for additional data comparing the fixed point charge and SWIG discretization schemes.
66.
E. O.
Purisima
and
S. H.
Nilar
,
J. Comput. Chem.
16
,
681
(
1995
).
67.
B.
Mennucci
,
E.
Cancès
, and
J.
Tomasi
,
J. Phys. Chem. B
101
,
10506
(
1997
).
68.
A. E.
Reed
,
R. B.
Weinstock
, and
F.
Weinhold
,
J. Chem. Phys.
83
,
735
(
1985
).
69.
E. G.
McRae
,
J. Phys. Chem.
61
,
562
(
1957
).
70.
N.
Rösch
and
M. C.
Zerner
,
J. Phys. Chem.
98
,
5817
(
1994
).
71.
A.
Klamt
,
C.
Moya
, and
J.
Palomar
,
J. Chem. Theory Comput.
11
,
4220
(
2015
).
72.
Ohio Supercomputer Center, http://osc.edu/ark:/19495/f5s1ph73 (accessed November 3, 2015).

Supplementary Material

You do not currently have access to this content.